
It goes against the grain of modern education to teach students to 

program. What fun is there to making plans, acquiring discipline, 

organizing thoughts, devoting attention to detail, and learning to be 

self critical? 

A. PERLIS 

E BNF is a notation for formally describing syntax: how to write entities 

in a language. We use EBNF throughout this book to describe the 

syntax of Ada. But there is a more compelling reason to begin our study of 

programming with EBNF: it is a microcosm of programming. First, there is 

a strong similarity between the control forms in EBNF rules and the control 

structures in Ada: sequence; decision, repetition, recursion, and the ability to 

name descriptions. There is also a strong similarity between the process of 

writing descriptions in EBNF and writing programs in Ada: we must synthesize 

a candidate solution and then analyze it- to determine whether it is correct and 

easy to understand. Finally, studylng EBNF introduces a level of formality that 

will continue throughout our study of programming and Ada. 



CHAPTER 2 EBNF: A Notation to Describe Syntax 

OBJECTIVES 

- Learn the control forms in EBIL'F: sequence, choice, option, and repetition 

- Learn how to read and write syntactic descriptions with EBNF rules 

- Explore the difference between syntax and semantics 

- Learn the correspondence between EBNF rules and Syntax Charts 

2.1 Languages and Syntax 

In the middle 19505, computer saentists began to design high-level 
programming languages and build their compilers. The first two major successes 
were FORTRAN (FORrnula TRANslator), developed by the IBM corporation 
in the United States, and ALGOL (ALGOrithmic Language), sponsored by a 
consortium of North American and European countries. John Backus led the 
effort to develop FORTRAN. He then became a member of the ALGOL design 
committee, where he studied the problem of describing the syntax of these 
programming languages simply and precisely. 

Backus invented a notation (based on the work of logician Emil Post) that was 
simple, precise, and powerful enough to describe the syntax of any programming 
language. Using this notation, a programmer or compiler can determine whether 
a program is syntactically correct - whether it adheres to the grammar and 
punctuation rules of the programming language. Peter Naur, as editor of the 
ALGOL report, popularized this notation by using it to describe the complete 
syntax of ALGOL. In their honor, this notation is called Backus-Naur Form 
(BNF). Thls book uses Extended Backus-Naur Form (EBNF) to describe Ada's 
syntax, because it results in more compact descriptions. 

In a parallel development, the linguist Noam Chomsky began work on the 
harder problem of describing the syntactic structure of natural languages, such 
as English. He  developed four different notations that describe languages of 
increasing complexity; they are numbered type 3 up through 0 in the Chomsky 
hierarchy. The power of Chomsky's type 2 notation is equivalent to BNF and 
EBNE The languages in Chomsky's hierarchy, along with the machines that 
recognize them, are studied in computer science, mathematics, and linguistics 
under the topics of formal language and automata theory. 

2.2 EBNF Descriptions and Rules 

FORTRAN 
and 
ALGOL 

Backus, Naur, 
BNF and EBNF 

Chomsky's 
language 
hierarchy 

An EBNF description is an unordered list of EBNF rules. Each EBNF EBNF descriptions 
rule has three parts: a left-hand side (LHS), a right-hand side (RHS), and the via EBNF rules 
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character e separating the two sides; read this symbol as "is defined as". The 
LHS contains one (possibly hyphenated) word written in lower-case; it names 
the EBNF rule. The RHS supplies the definition associated with this name. It 
can include combinations of the four control forms explained in Table 2.1. 

Table 2.1 Control Forms of Riaht-Hand Sides in EBNF Rules 

Sequence items appear left-to-righ~ their order is important 

Choice alternative items are separated by a I (stroke); one item is chosen from this 
list of alternatives; their order is unimportant 

Option an optional item is enclosed between [ and ] (square brackets); the item can 
either be included or discarded 

Repetition a repeatable item is enclosed between { and } (curly braces); the item can 
be repeated zero or more times 

EBNF rules can include six characters with special meanings: e ,  I, [, I ,  {, 
and ). Except for these characters and the names of EBNF rules, anything that 
appears in a RHS stands for itself: letters, digits, punctuation, parentheses, and 
any other printable characters. 

An EBNF Description of Integers 
The following EBNF rules describe how to write simple integers.' Their right- 
hand sides illustrate every control form available in EBNE 

digit e O 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  
integer e [* l -]digit{digit) 

- A digit  is defined as any one of the ten alternative characters 0 through 9. 

- An integer is defined as a sequence of three items: an oprional sign (if it is 
included, it must be the character + or -), followed by any digit,  followed by 
a repetition of zero or more digit  - each repeated digit  is independently 
chosen fiom the list of alternatives in the digit  rule. The RHS of integer 
combines all the control forms: sequence, option, choice, and repetition. 

We can abstract the structure of an integer - where each digit  appears - 
independently fiom the definition of digit  - which defines only the possible 
choice of characters. For example, an integer written in base 2 has this same 
structure, even though the digit  rule would be restricted to the choices 0 and 1. 

Characters with 
special meanings 

A first EBNF 
description 

An English 
interpretation 
of the control 
forms in these 
EBNF rules 

Abstraction via 
named EBNF rules 

'The EBNF dcxriptions in this chapter are for illustration purposes only: they do not dcxribe any 
ofAda5 actual language hturrs. Subsequent chaptrrri use EBNF extensively to demibe Ma. 
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To make EBNF descriptions easy to read, we align their rule names, the (: 
and rule definitions. Sometimes we put extra spaces in a RHS, to make it easier 
to read; such spaces do not change the meaning of the rule. Although the order 
in whch EBNF rules appear is irrelevant, it is useful to write the rules in order of 
increasing complexity: with the right-hand sides in later EBNF rules referring 
to the names in the left-hand sides of earlier ones. Using this convention, the 
last EBNF rule names the main syntactic entity being described. 

Given an EBNF description, we must learn to interpret it as a language 
lawyer: determining whether a symbol - any sequence of characters -is legal 
or illegal according to the EBNF rules in that description. Computers perform 
expertly as language lawyers, wen on the most complicated descriptions. 

Proving Symbols Match EBNF Rules 
To prove that a symbol is an integer we must match its characters with the 
characters in the integer rule, according to that rule's control forms. If there is 
an exact match, we recognize the symbol as a legal integer; otherwise we classify 
the symbol as illegal, according to the integer description. 

Proofs in English: To prove that the symbol 7 is an integer, we must start in 
the integer EBNF rule with the optional sign; in this case we discard the option. 
Next in the sequence, the symbol must contain a character that we can recognize 
as a digit; in this case-we choose the 7 alternative from the RHS of the digit 
rule. Finally, we must repeat digit zero or more times; in this case we use zero 
repetitions. Every character in the symbol 7 has been matched against wery 
character in the integer EBNF rule, according to its control forms. Therefore, 
we recognize 7 as a legal integer according to this EBNF description. 

We use a similar argument to prove that the symbol +I42 is an integer. Again 
we must start with the optional sign; in this case we include the option and choose 
the + alternative. Next in the sequence, the symbol must contain a character that 
we can recognize as a digit; in this case we choose the 1 alternative from the RHS 
of the digit rule. Finally, we must repeat digit zero or more times; in this case 
we use two repetitions. For the first digit we choose the 4 alternative, and for the 
second digit the 2 alternative: recall that each time we encounter a digit, we are 
bee to choose any of its alternatives. Again, wery character in the symbol +I42 
has been matched against every character in the integer EBNF rule, according 
to its control forms. Therefore, +I42 is a also a legal integer. 

We can easily prove that 1,024 is an illegal integer by observing that the 
comma appearing in this symbol does not appear in either EBNF rule; therefore, 
the match is guaranteed to fail. Likewise for the letter A in the symbol 15. 
Finally, we can prove that 15- is an illegal integer - not because it contains an 
illegal character, but because its structure is incorrect: in this symbol the minus 
follows the last digit, but the sequence in the integer rule requires that the sign 
precede the first digit. So according to our EBNF rules, none of these symbols 

Typesetting 
conventions 

Language lawyers 

Matching 
symbols with 
EBNF rules 

7 is an integer 

*I42 is an integer 

1,024 A5 and 15- 
are each Illegal 
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is recognized as a legal integer.' When viewing symbols as a language lawyer, 
we cannot appeal to intuition; we must rely solely on the EBNF description we 
are matching. 

Tabular Proofs: A tabular proof is a more formal demonstration that a symbol Proof rules 
matches an EBNF description. The first line in a tabular proof is always the 
name of the syntactic entity we are nylng to match (in this example, integer); 
the last line must be the symbol we are matching. Each line is derived from the 
previous one according to the following rules. 

1. Replace a name (LHS) by its definition (RHS) 
2. Choose an alternative 
3. Determine whether to include or discard an option 
4. Determine the number of times to repeat 

Combining rules 1 and 2 simplifies our proofs by allowing us to replace a left-hand Simplifying proofs 
side by one of the alternatives in its right-hand side in a single step. Figure 2.1 
contains a tabular proof showing +I42 is an integer. 

Derivation Trees: We can illustrate a tabular proof more graphically by writing A graphic 
it as a derivation tree. The downward branches in such a tree correspond to illustration 

the same rules that allow us to go from one line to the next in a tabular proof. proofs 

Although a derivation tree displays the same information as a tabular proof, it 
omits certain irrelevant details: the ordering of some decisions in the proof (e.g., 
which digit is replaced first). The original symbol appears at the bottom of a 
derivation tree, when its characters are read left to right. Figure 2.1 contains a 
derivation tree showing +I42 is an integer. 

Status 

integer 
[+I-]  digit {digit) 
[+]digit{digit) 
*digit{digit) 
+l{digit) 
*ldigit digit 
*14digit 
+I42 

Reason (rule #) integer 

Gwen 
Replace integer by is RHS (1) 
Choose alternative (2) 
Include option (3) 

rtl 
[ + I - ]  digit {digit) 

Replace digit by 1 alternative (1 &2) 
Use two repetitions (4) 
Replace digit by 4 alternative (1&2) 1.1 1 
Replace digit by 2 alternative (1&2) I digit digit 

+ I I 
Figure 2.1 A Tabular Proof and its Derivation Tree showing *I42 is an integer 

'AU three symbols are legal integers under some inqreor ion:  the 6 r s c  uses a comma w separate 
rhc thousands digir h m  the hundreds, the second is a valid number written in base 16, and the h r d  
is a negative number - somerimes wricten this way by accounons. 
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REVIEW QUESTIONS 

1. Classrfy each of the following symbols as a legal or illegal integer. Note that part (0) 
specifies a symbol containing no characters. 

a. *42 e. -1492 i. 28 m. 0 q. *-7 
b. f. 187 j. 187.0 n. forty two r. 1 543 
c. -0 g. drei k. $15 o. s. 1*1 
d. VII h. 251 1.1000 p. 555-1212 t. 000193 

Annuer: Only a, c, e, f, I, m, and t are legal. 

2. a. Write a tabular proof that -1024 is a legal integer. b. Draw a derivation tree 
showing 03 is a legal integer. 

Annuer: Note how the omitted option ([*I -1) is drawn in the derivation tree. 
Status Reason (rule #) integer 

integer Given 
[* l -]digit{digit) Replace integer by its RHS (1) 
[-]digit{digit) Choose - alternative (2) 
-digit{digit) Include option (3) 

rh 
[+I-] digit  {digit) 

-l{digit) Replace digit  by 1 alternative (18~2) 
-1digit digit  digit Use three repetitions (4) I I I 
-1 Odigit digit  Replace digit  by 0 alternative (18~2) 0 digit 
-102digit Replace digit by 2 alternative (18~2) 
-1024 Replace digit by 4 alternative (18~2) 

I 
3 

2.3 More Examples of EBNF 

The following EBNF description is equivalent' to the one presented in Identical versus 
the previous section. Two EBNF descriptions are equivalent if they recognize equivalent 

exactly the same legal and illegal symbols: for any possible symbol, both will 
recognize it as legal or both will classify it as illegal - they never classify symbols 
differently. 

sign e I - 
digit  e 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  
integer e [sign]digit{digit) 

Thls EBNF description is not identical to the first, because it defines an extra Names for rules 
s ign rule that is then used in the integer  rule. But these two EBNF descriptions do not change 

are equivalent, because providing a named rule for +I - does not change which their meanings 

symbols are legal. In fact, even ifthe names of all the rules are changed uniformly, 
exactly the same symbols are recognized as legal. 

*The words "identical" and "equivalent" have d~stinct meanings. Identical meam "are exactly the 
samem. E q d e n t  means "are the s m e  within some context". Any two dollar bills have identical 
buying power. A dollar bill has equivalent buying power to four quarters in most concern; but in a 
vendq machine that requires eraa change, it does not 
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Any symbol recognized as an integer by the previous EBNF descriptions is 
recognized as a z in this description, and vice versa. Just exchange the names x, 
y ,  and z, for sign, digit, and integer in any tabular proof or derivation tree. 

Complicated EBNF descriptions are easier to read and understand if they 
are named well: each name intuitively communicating the meaning of its rule's 
definition. But to a language lawyer or compiler, names - good or bad -cannot 
change the meaning of a rule or the classification of a symbol. 

Incorrect EBNF Descriptions for integer 

This section examines two EBNF descriptions that contain interesting errors. 
To start, we try to simplify the integer rule by removing the digit that precedes 
the repetition. The best description is the simplest one; so if these rules are 
equivalent to the previous ones, we have improved the description of integer. 

sign + + I - 
digit ~ 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  
integer e [signltdigit) 

Every symbol that is a legal integer in the previous EBNF descriptions is 
also legal in this one. For example, we can use this new EBNF description to 
prove that +I42 is an integer: include the sign option, choosing the plus; repeat 
digit three times, choosing 1,4, and 2. 

But there are two symbols that this description recognizes as legal, while the 
previous descriptions classify them as illegal: + and - (signs without following 
digts). The  previous integer rules all require one digit followed by zero or more 
others; but this integer rule contains just the repetition, which may be taken 
zero times. To prove + is a legal integer: include the sign option, choosing the 
plus; then repeat digit zero times. The proof for - is similar. Even the 'empty 
symbol", which contains no  characters, is recognized by this EBNF description 
as a legal integer: discard the sign option, then repeat digit zero times. Because 
of these three differences, this EBNF description of integer is not equivalent to 
the previous ones. 

Next we address the problem of describing how to write numbers with 
embedded commas: 1,024. We can easily extend the digit rule to allow a comma 
as one of its alternatives. 

sign + + I -  
coma-digit + 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 1 ,  
coma-integer e [sign]coma-digittconna-digit) 

Using this description, we can prove that 1,024 is a legal comma-integer: 
discard the sign option: repeat coma-digit four times, choosing 1 , 0 2 and 4. 
But we can also prove that 1, ,3,4 is a legal comma-integer, by using six repetitions 

Equivalent proofs 

Good rule names 

A simpler syntax 
for integer? No! 

Almost equivalent 

Three differences 

Numbers with 
embedded 
commas 

Good news, 
bad news 
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of comma-digit and choosing a comma for the second, third and fifth ones. By 
treating a comma as if it were a digit, numbers with well-placed commas are 
recognized as legal, but symbols with randomly placed commas also become 
legal. See Exercise 8 for a correct solution to this problem. 

REVIEW QUESTIONS 

1. Are the following EBNF descriptions equivalent to the standard ones for integer? 
Jusufy your answers. 

sign e [ + I - ]  sign e [+I-] 
digit e 0111213141516171819 digit e 0111213141516171819 
integer e sign digitCdigit) integer e sign Cdigitldigit 

A m n :  Each is equivalent Left: it is irrelevant whether the option brackets appear 
around the sign in integer, or around + I -  in the sign rule; in either case there is a 
way to include or discard the sign. Right: it is irrelevant whether the mandatory 
digit comes before or after the repeated ones; in either case one digit is mandated 
m d  there is a way to recognize one or more digin. 

2. Write m EBNF description for even-integer that recognizes only even integers: -6 
m d  34 are legal but 3 or -23 are n o t  

A m n :  
sign e + l -  
even-digit e 0 1 2 1 4 1 6 1 8 
digit e even-digit 1 1 1 3 1 5 1 7 1 9 
even-integer e [sign]{digitleven-digit 

3. Normalized integers have no extraneous leading zeros, and zero is unsigned. Write 
m EBNF description for normalized-integer: 0, -1, and 193 are legal, but -01,000193, 
+0, and -0 are no t  

sign * + I -  
non-&digit e l 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  
digit e 0 l non-&digit 
normalized-integer e 0 1 [signlnon-0-digit{digit) 

2.4 Syntax versus Semantics 

EBNF descriptions specify only syntax: the form in which some entity Form versus 
is written. They do not specify semantics: the meaning of what is written. meaning 

The  sentence, "Colorless green ideas sleep furiously." illustrates the difference 
between syntax and semantics: I t  is syntactically correct, because the grammar 
and punctuation are proper. But what does this sentence mean? How can ideas 
sleep? If ideas can sleep, what does it mean for them to sleep furiously? Can ideas 
have colors? Can ideas be both colorless and green? These questions all relate 
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to the semantics, or meaning, of the sentence. As another example the sentence, 
"The Earth is the fourth planet out from the Sun" has an obvious meaning, but 
its meaning is contradicted by known astronomical facts. 

Two semantic issues are important in programming languages Symbols and 
meanings 

- Can two different symbols have the same meaning? 
- Can a symbol have two different meanings? 

The first issue is easy to illustrate. Everyone has a nickname; so two names Two symbols, 
can refer to the same person. The second issue is a bit more subtle; here the one meaning 

symbol we analyze is a sentence. Suppose you take a course that meets on 
Mondays, Wednesdays and Fridays. If your instructor says on Monday, "The One 

two meanings 
next class is canceled" you know not to come to class on Wednesday. Now 
suppose you take another course that meets every weekday. Ifyour instructor for 
this course says on Monday, "The next class is canceled" you know not to come 
to class on Tuesday. Finally, if it were Friday, "The next class is canceled" has 
the same meaning in both courses: there is no class on Monday. So the meaning 
of a sentence may depend on its context. 

Semantics and EBNF Descriptions 
Now we examine these semantic issues in relation to the EBNF description for 
integer. In a mathematical context, the meaning of a number is its value. In 
common usage, the symbols 1 and +1 both have the same value: an omitted sign 
is considered equivalent to a plus sign. As an even more special case, the symbols 
0 and +O and -0 all have the same value: the sign of zero is irrelevant. Finally, the 
symbols 000193 and 193 both have the same meaning: leading zeros do not effect 
a number's value. 

But there are contexts where 000193 and 193 have different meanings. I once 
worked on a computer where each user was assigned a six-digit account number; 
mine was 000193. When I logged in, the computer expected me to identify myself 
with a six-digit account number; it accepted 000193 but rejected 193. 

Another example concerns how measurements are written: although 9.0 and 
9.00 represent the samevalue, the former may indicate the quantity was measured 
to only two significant digits; the latter to three. Finally, when saying the name 
"Rich" and the adjective "rich", the upper-case letter is pronounced the same as 
the lower-case one. 

Structured integers contain embedded underscores that separate groups of 
digits, indicating some important structure. We can use them to encode real- 
world information in an easy to read form: dates 2-10-1954, phone numbers 
1-800-555-1212, and credit card numbers314-159-265-358. Underscores can appear 
only between digits - not as the first or last character, and they cannot be 
adjacent. Here is an EBNF description that captures exactly these requirements. 

digit e 0 1 1 l 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  
structured-integer e digit{[-]digit) 

The semantics 
of integer in 
mathematics 

Alternative integer 
semantics 

The semantics of 
measurements 
and 
pronunciation 

The syntax 
and semantics 
of structured 
integers 
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Semantically, underscores do not affect the value of a structured-integer: Semantics of 
1-800-555-1212 has the same meaning as 18005551212; when dialing either number, underscores 

we press keys only for the characters representing a digi t .  
In summary, EBNF descriptions specify syntax not semantics. When we Describing 

describe the syntax of an Ada feature in EBNF, we will describe its semantics semantics 

using a mixture of English definitions and illustrations. Computer scientists are 
just beginning to develop notations that describe the semantics of programming 
languages in simple and precise ways. In general, meaning is much harder to 
quantify than form. 

REVIEW QUESTIONS 

1. a. Find two dates that have the same meaning, when written naturally as structured 
integers. b. Propose a new format for writing dates that alleviates this problem. 

A m r r :  a. T h e  date December 5, 1987 is written as 12-5-1987; the date January 25, 
1987 is written as 1-25-1987. Both symbols have the same meaning: the value 1251987. 
(b) To alleviate this problem, always use two digits to speclfy 3 day, adding 3 leading 
zero if necessary. Write the first date as 12-05-1987; write the second as 1-25-1987. 
These structured integers have different values. 

2.5 Syntax Charts 

A Syntax Chart (SC) is a graphical notation for writing a syntax Representing 
description. Figure 2.2 illustrates how to translate each EBNF control form into EBNF rules 

its equivalent SC. In each case we must follow the arrows from the beginning of graphically 

the picture on the left, to its end on the right. In a sequence, we must go through 
each item. In a choice, we must go through one rung in a ladder of alternatives. 
In an option we must go through either the top rung containing the item, or the 
bottom that does not. Repetition is like option, but we can loop through the 
item in the top rung; this picture is the only one with a right-to-left arrow. 

Figure 2.2 Translating EBNF rules into Syntax Charts 
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We can combine these control forms to translate the RHS of any EBNF rule Combining 
into its equivalent syntax chart. We can also compose related syntax charts into and composing 

one big SC that contains no named EBNF rules, by replacing each named LHS Syntax charts 

with the SC for its RHS. Figure 2.3 shows the SC equivalents of the digit  and 
original integer EBNF rule, and one large composed SC for integer. 

integer digit 

digit +I 1 9 

integer 

Figure 2.3 Syntax Charts for digit and integer, and a composed integer 

The syntax charts in Figure 2.4 illustrate the RHS of three interesting EBNF Disambiguation 
rules. The first shows a repetition of two alternatives, where any number of of EBNF rules 

intermixed As and Bs are legal: AAA, BB, or BABBA. A different choice can be made 
for each repetition. The second shows two alternatives where a repetition of As 
or a repetition of Bs are legal: A A A  or BB, but not AB. Once the choice is made, only 
one of the characters can be repeated. Any symbol legal in this rule is legal in 
the first, but not vice versa. 

- 
{ A )  1 { B J  

Figure 2.4 Syntax Charts Disambiguating Interesting EBNF Rules 
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The third illustration shows how the sequence and choice control forms A factoring 
interact: the stroke separates the first alternative (the sequence AB) from the technique 
second (just C). To describe the sequence of A followed by either 6 or C we must 
write both alternatives fully or use a second rule to "factor out" the alternatives. 

simple e AB I AC t a i l  e B I C 
simple e A t a i l  

EBNF is a compact text-based notation; syntax charts present the same EBNF versus 
information, but in a graphical form. Which is better? For beginners, SCs are syntax charts 
easier to use when classifying symbols; for advanced students EBNF descriptions, 
which are smaller, are easier to read and understand. Because beginning students 
become advanced ones, thls book uses EBNF rules to describe Ada's syntax. 

REVIEW QUESTIONS 

1. a. Translate each of the following right-hand sides into a syntax chart. 

A{[JA) {A[BICI) {AlB[Cl) 

b. Which symbols does the first RHS recognize as legal: 1-1, A A - A A A ,  -A, A_, A--A? 
Which symbols do the second and third RHS recognize as legal: ABAAC, ABC, BA, A A ,  
ABBA? 

Am$T\ 47% 
+ A  

A{[JA) {A[BlCl} {AIB[CI} 
bl. A-A and A A - A A A .  b2. ABAAC and AA.  b3. ABC, BA, A A  and ABBA. 

2.6 EBNF Descriptions of Sets 

This section explores the syntax and semantics for writing sets of integers. The syntax of sets 
Such sets start and end with parentheses, and contain zero or more integers 
separated by commas. The  empty set (1, a singleton set (31, and a set containing 
the elements (5,-2,111 are all legal. Sets are illegal if they omit the parentheses, 
mntain consecutive commas (1, ,31 or extra commas (,21 or (1,2,3,1. 

Given a description of in teger ,  the following EBNF rules describe such sets. EBNF for sets 
Note that the parentheses characters in in teger -set  stand for themselves; they 
are not used for grouping or any other special EBNF purpose. 

integer- l ist  e integer{.integer) 
integer-set e ([integer-list] 

We can easily prove that the empty set is a legal integer-set:  discard the Proofs using 
i n t e g e r - l i s t  option between the ~arentheses. For a singleton set we include this integer-set 

option but take zero repetitions after the first i n t e g e r  in i n t e g e r - l i s t .  Figure 2.5 
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proves that (5,-2,111 is a legal integer-set. The tabular proof and its derivation 
tree are shortened by recognizing in one step that 5, -2, and 11 are each an integer. 
Like lemmas in mathematics, we use this informarion without proving it. 

Status 

integer-set 
([integer-list]) 
(integer-list) 
(integer{.integer) 
(5{,integer)) 
(5,integer ,integer) 
(5,-2,integer) 
(5,-2.11) 

Reason integer-set 

Given 
Replace integer-set by i s  RHS 
Include option 
Replace integer-list by i s  RHS 

dl 
( [integer-list] ) 

Lemma: 5 is an integer I 
Use two repetitions 
Lemma: -2 is an integer 

I 

integer-list 

Lemma: 11 is an integer 

+l 
integer {,integer) 

B integer s integer 

-2 11 

Figure 2.5 A Tabular Proof and its Derivation Tree showing (5,-2.11) is an integer-set 

Now we switch our focus to semantics and examine when two sets are Set semantics 
equivalent. The rules involve duplicate elements and the order of elements. 

- Duplicate elements are irrelevant and can be removed: (1,3,5,1,3,3,5) is 
equivalent to (1,3,5). 

- The order of the elements is irrelevant and can be rearranged: (1.5.3) is 
equivalent to (1.3.5) and (3,1,5) and all other permutations of these values. 

By convendon, we write sets in an ordered form, starting with the smallest Canonical sets 
element and ending with the largest; each element is written once. Such a form 
is called canonical. It is impossible for our EBNF description to enforce these 
properties, which is why these rules are considered to be semantic, not syntactic. 

The following EBNF rules are an equivalent description for writing sets. An equivalent . 
Here, the option brackets are in the integer-list rule, not the integer-set rule. description 

integer-list e [integer{,integer)] 
integer-set e (integer-list) 

There are two stylistic reasons to prefer the original description. First, it Stylistic 
better balances the complexity between the EBNF rules: the repetition control preferences 

form is in one rule, and the option is in the other. Second, the new description 
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allows integer-list to match the empty symbol, which contains no characters; 
this is a bit awkward and can lead to  problems if this EBNF rule is used in others. 

Sets containing Integer Ranges 
A range is a compact way to  write a sequence of integers. Using the symbol . . The structure of 
t o  represent "up through", the range 2. .5 specifies 2,3,4, and 5: the values 2 up ranges and sets 

through 5 inclusive. Using such a notation, we can write sets more compactly: 
(2. .5,8,10. .13,17. .19,21) instead of (2,3,4,5,8,10,11,12,13,17,18,19,21). T h e  
following EBNF rules extend our description of integer-set to include ranges. 

integer-range e integer[. .integer] 
integer-list e integer-range{,integer-range) 
integer-set e ( [integer-list]) 

Figure 2.6 proves that (1,3. .7,15) is a legal integer-set. 
Now we switch our focus to  semantics and examine the exact meaning of Range semantics 

ranges. For every pair of integers X and Y: 

X 5 Y: the range X . . Y  is equivalent to  all integers between X and Y inclusive. 
By thls rule, every integer X is equivalent to  the range X . . X .  

X > Y: the range X .  .Y  is the "null range" and contains no values. 

By convention, we do not use ranges to write single values nor ranges of two Canonical ranges 
values (1.2 is more compact than 1. .2) unless there are special reasons to do so. 

REVIEW QUESTIONS 

1. Translate the RHS of the integer-range, integer-list, and integer-set EBNF rules 
into syntax charts. 

. - . - integer -integer-range 
Awn: + integer +integer-range 

integer[. .integer] integer{ ,integer-range) 
integer-list 

([integer-list] 1 
2. Conven the following sea into canonical form; use ranges when appropriate. 

a. (1,5,9,3,7,11,9) c. (8,1,2,3.4,5,12,13,14,10) e. (1..3,8,2..5,12,4) 
b. (1..3,8,5..9,4) d. (2..5,7..10,1) f. (4..1,12,2,7..10,6) 

A w n :  
a. (lS3,57,9,11 C. (1..5,8,10s12..14) e. (1..5,8,12) 
b. (1. -9) d. (1. .5,7. .lo) f. (2,6. .10,12) 

3. The following EBNF description for integer-set is more compact than the original, 
but they are not equivalent This one recognizes all the sets recognized by the 
original description, but it recognizes others as well; find one of these sets. 

integer-list e integer{,integer 1 .  .integer) 
integer-set e ([integer-list]) 
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Annun-: This description allows "ranges" with more than one . . in them: (1. . 3 .  .5). 

Status 

integer-set 
([integer-list] 
(integer-list) 
(integer-range{ .integer-range)) 
(integer [. .integer] {,integer-range) ) 
(integer{ ,integer-range)) 
(l{ ,integer-range)) 
(1 ,integer-range,integer-range) 
(l,integer[. .integer] .integer-range) 
(1.31. .integer] ,integer-range) 
(1,3. .integer ,integer-range) 
(1,3. .7,integer-range) 
(1,3. .7,integer[. .integer]) 
(1,3..7,15[. .integer]) 
(1,3..7,15) 

integer-set 

( [integer-list] ) 

integer-list 

Reason 

Given 
Replace integer-set by i s  RHS 
Include option 
Replace integer-list by i s  RHS 
Replace integer-range by i s  RHS 
Discard option 
Lemma: 1 is an integer w 

Use two repetitions 
Replace integer-range by i s  RHS 
Lemma: 3 is an integer 
Include option 
Lemma: 7 is an integer 
Replace integer-range by i s  RHS 
Lemma: 15 is an integer 
Discard option 

integer-range { ,integer-range) 

integer [. .integer] s integer-range s integer-range 

integer [..integer] integer [. .integer] 

' +, l'5 3 

I 
. . integer 

Figure 2.6 A Tabular Proof a n d  its Derivation Tree s h o w i n g  (1.3. .7,15) is a n  integer-set 
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2.7 Advanced EBNF (optional) 

This section examines two advanced concepts in E B N F :  recursive E B N F  Recursion, and 
rules and using recursive E B N F  rules to describe E B N F .  In programming, EBNF in EBNF 

recursion is a useful technique for specifying complex data structures and the 
subprograms that manipulate them. 

Recursive EBNF Descriptions 
Recursive E B N F  descriptions can contain rules that are directly recursive or Direct recursion 
mutually recursive: such rules use their names in a special way. A directly 
recursive E B N F  ~ l e  uses its own name in its definition. The following directly 
recursive rule recognizes symbols containing any number of As, which we can 
describe mathematically as A n ,  n 2 0. 

The first alternative in this rule contains the empty symbol, which is A non-recursive 
recopzed as a legal r l .  Directly recursive rules must include at least one alternative 

alternative that is not recursive, otherwise they describe only infinite-length 
symbols. 

The  second alternative means that an A preceding anything that is recognized The meaning of 
as an r l  is also recognized as an r l :  so A is recognized as an r l  because it has recursive rules 

an A preceding the empty symbol; likewise A A  is also recognized as an r l ,  as is 
AAA, etc. Figure 2.7 is a tabular proof and its derivation tree, showing how A A A  
is recognized as a legal r l .  If we require at least one A, this rule can be written 
more understandably as r l  A I A r l ,  with A as the non-recursive alternative. 

Status Reason - r l  

r l  Given 
A r l  Replace r l  by the second alternative in its RHS 
A A  r l  Replace r l  by the second alternative in its RHS 
A A A  r l  Replace r l  by the second alternative in its RHS 

A 
A r l  

A A A  Replace r l  by the first (empty) alternative in i s  RHS h 

Figure 2.7 A Tabular Proof and its Derivation Tree showing A A A  is an r l  
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The recursive rl rule is equivalent to rl e { I ] ,  which uses repetition instead. Recursion and 
Recursion can always replace repetition, but the converse is not true,' because repetition 

recursion is more powerful than repetition. For example, examine the following 
directly recursive EBNF description. It 'recognizes all symbols having some 
number of As followed by the same number of Bs: AnBn, n 2 0. The description 
of these symbols cannot be written without recursion. 

The rule r2 e {A}{B} does not require the same number of As as Bs. 
We just learned that repetition can always be replaced by recursion in an EBNF versus BNF 

EBNF rule. We can also replace any option control form by an equivalent 
choice control form that contains an empty symbol. Using both techniques, 
we can rewrite our original integer description, or any other one, using only 
recursion, the choice control form, and the empty symbol. EBNF without the 
repetition or option control form extensions is called just BNE The structure of 
each BNF rule is simpler, but descriptions written using them are often longer. 

sign e I + I - 
digit e O l l l 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9  
digits e I digitdigits 
integer e sign digit digits 

Even recursive EBNF rules are not powerful enough to describe all simple Recursive EBNF 
languages. For example, they cannot describe symbols having some number rules are limited 

of As, followed by the same number of Bs, followed by the same number of Cs: A'B'C'~ 2 0 
AnB"C, n 2 0. To specify such a description, we need a more powerful notation: 
type 1 or type 0 in the Chomsky Hierarchy. 

Describing EBNF using EBNF rules 
EBNF descriptions are powerful enough to describe their own syntax. Although Mutual recursion 
such an idea may seem odd at first, recall that dictionaries use English to 
describe English. The  EBNF rules describing EBNF illustrate mutual recursion: 
although no rule is directly recursive, the RHS of rhs is defined in terms of 
sequence, whose RHS is defined in terms of option and repetition, whose RHSs 
are defined in terms of rhs. Thus, all these rules are mutually described in terms 
of each other. 

For easier reading, these rules are grouped into three categories: character Boxed characters 
set related, LHS/RHS related (mutually recursive), and EBNF related. When a 
boxed character appears in a rule, it stands for itself, not its special meaning in 
EBNF: denotes the stroke character, it does not separate alternatives in the 
rule in whlch it appears. The empty symbol appears as an empty box 

'The EBNF rule r1 k uil recursive: the m i v e  refrrence occurs at the end of an alternative. All 
cad recursive E B m  d e s  can be replaced by equivalent EBNF ~ l t s  that use repetition. 
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lover-case e= a~b~c~d~e~f~gfhliljlklllmlnlolplqlrlsltlulvlvlxlylz 
upper-case r A ~ B ~ C ~ D I E I F ~ G ~ H ~ I ~ J ~ K ~ L ~ M ~ N ~ O ~ P ~ Q ~ R ~ S ~ T ~ U I V I U I I I Y I Z  
d i g i t  e= 011l2l31415I6l71819 
other-character e= -1-l"III&I'J(l)I*~+~,I.I/l:~;~<~=~> 
character e= lover-case I upper-case 1 d i g i t  I other-character 
empty-symbol e= I] 
l h s  e= lover-case{[-]lover-case I [ - ]d ig i t )  
opt ion 
r e p e t i t i o n  
sequence e= empty-symbol l {character I l h s  I option I repet i t ion)  
rhs e= sequence{ nsequence) 

ebnf - ru le  e= l h s l r ] r h s  
ebnf -descript ion e= {ebnf -rule) 

REVIEW QUESTIONS 

1. a. Write a tabular proof that shows AAAABBBB is a legal r2. b. Draw a derivation tree 
showing AABB is a legal r2. 

Anruler: 
Status Reason r 2  

r 2  Given 
Ar2B Replace r 2  by the second alternative in i s  RHS 
AA r 2  BB Replace r 2  by the second alternative in i s  RHS 
A A A  r 2  BBB Replace r 2  by the second alternative in i s  RHS 

dl 
A r 2  B 

AAAA r2BBBB Replace r 2  by the second alternative in i s  RHS 
AAAABBBB Replace r 2  by the first (empty) alternative in i s  RHS 

. . .  
2. Replace the i n t e g e r - l i s t  rule by an equivalent directly recursive one. A r 2  B 

Annun: i n t e g e r - l i s t  e= in teger  I in teger- l is t , in teger  I 
3. Rewrite: ebnf e= { A  [B I C] ) as an equivalent description in BNF. 

choice e= I B I C 
bnf e= I Achoicebnf 

SUMMARY 

This chapter examined the use of EBNF rules to describe syntax. It started by discussing 
EBNF descriptions, named rules, and the control f o m  used in the right-hand sides of 
these rules: sequence, choice, option, and repetition. Proofs showing how a symbol 
matches an EBNF description were illustrated in English, and more formally as tabular 
proofs and their derivation trees. ?hroughout the chapter various EBNF descriptions 
of integers, ranges, and s e s  were proposed and analyzed according to their syntax and 
semantics. EBNF descriptions must be liberal enough to include all legal symbols, 
but restrictive enough to exclude all illegal symbols. Syntax Charts were seen to 
present graphically the same information contained in EBNF rules. Finally, this chapter 

EBNF descriptions 
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introduced recursive descriptions (direct and mutually recursive) and the latter's use in an 
EBNF description of EBNE 

EXERCISES 

1. Write an EBNF description for phone-number, which describes telephone numbers 
written according to the following specifications. The  description should be 
compact, and each rule should be well named. 
- Normal: a three digit exchange, followed by a dash, followed by a four digit 
number: 555-1212 

- Long Distance: A 1, followed by a dash, followed by a three digit area code 
enclosed in parentheses, followed by a three digit exchange, followed by a dash, 
followed by a four digit number: 1-(800)555-1212 

- Interoffice: a 1 followed by either a 3 or a 5, followed by a dash, followed by a 
four digit number: 15-1212 

2. T h e  control forms in each of the following pairs are not equivalent. Find the 
simplest symbol that is classified differently by each control form in the pair. 

a l . [ A ] [ B ]  b l . { A I B )  c l . A I B  
a2. [A[B]] b2. {A) I {B) c2. [A][B] 

3. Simp& each of the following control forms (but preserve equivalence). 
For this problem, simpler means shorter or has fewer nested forms. 

a. A l B l A  c. [Al{A)  e . [ A l B l  I [ B I A I  g . A l A B  
b. A ] ] ]  d. [A]{C) I [B]{C) f. {[AlB] [Bl A]) h. A l  AAl AAAl AAAAl AAAAA 

4. Write an EBNF description for numbers written in scientific notation, which 
scientists and engineers use to write very large and very small numbers compactty. 
Avogadro'snumber is written 6.02252xlOf23 and read as 6.02252 -called the mantissa 
- times 10  raised to the 23d power - called the exponent. Likewise, the mass of 
an electron is written 9.11xlOf -31 and earth's gravitational constant is written 9.8  - 
this number is pure mantissa; it is not multiplied by any power of ten. 

Numbers in scientific notation always contain at least one digit in the mantissa; 
if that digit is nonzero: (1) it may have a plus or minus sign preceding it, (2) it may be 
followed by a decimal point, which may be followed by more digits, and (3) it may be 
followed by an exponent that specifies multiplication by ten raised to some non-zero 
unsigned or signed integer power. T h e  symbols 0.5, 15.2, +0,0x10f5,5.3x10f02, and 
5.3xlOf2.0 are illegal in scientific notation. Hint: my solution uses a total of five 
EBNF rules: non+digit, d i g i t ,  mantissa, exponent, and scientif ic-notation. 

5. Idenafy one advantage of writing dates as a structured-integer in the form: year, 
month, day (1954-02-10) instead of in the normal order (02-10-1954). 

6. T h e  following EBNF rules attempt to describe every possible family-relation. Here 
spaces are important, so all the characters do not run together. 

contemporary -e SISTER I BROTHER 1 WIFE 1 HUSBAND 
ancestor-descendent -e MOTHER I FATHER I DAUGHTER I SON I NEPHEW I NIECE 
s ide-re lat ion -e AUNT I UNCLE I COUSIN 
c lose-re lat ion -e contemporary I ancestor-descendent I side-relation 
f ar - re lat ion -e {GREAT) side-relation I {GREAT) [GRAND] ancestor-descendent 
fami ly-re lat ion e far - re lat ion 1 [STEP] close-relation 



C H A P T E R  2 EBNF: A Notation to Describe Syntax 

a. Classify each of the following symbols as a legal or illegal family-relation. 
i. SISTER iv. GRAND MOTHER vii. GREAT UNCLE 

ii. UNCLE LARRY V. GRAND UNCLE viii. STEP STEP BROTHER 
iii. GREAT GREAT GRAND SON vi. GRAND NIECE ix. GREAT MDTHER 

b. Based on your classification in ix, improve the far-relation rule to always require 
a GRAND after the last GREAT. 

7. We can extend the previous EBNF rules for describing family relationships. 

person e ME I MY family-relation I THE family-relation OF MY family-relation 

This description specifies symbols such as MY GRAND MOTHER and THE MOTHER 
OF MY MDTHER. These symbols may denote the same person, although MY 
GRAND MDTHER may also refer to THE MDTHER OF MY FATHER, THE MOTHER OF MY 
STEP FATHER, em. Write a simpler symbol that is equivalent to each of 
the following; in some cases, more than one answer may be correct 

a. THE SISTER OF MY MOTHER e. THE SON OF MY FATHER 
b. THE GRAND SON OF MY MDTHER f. THE DAUGHTER OF MY GREAT GRAND MOTHER 
c. THE WIFE OF MY FATHER g. THE GRAND SON OF MY GREAT GREAT GRAND MOTHER 
d. THE GRAND FATHER OF MY SON h. THE FATHER OF MY AUNT 

8. Write an EBNF description for comma-integer, which includes normalized unsigned 
or signed integers (no extraneous leading zeros) that have commas in only the correct 
places (separating thousands, millions, billions, etc.): 0; 213; -2,048; and 1,000,000. It 
should not recognize -0; 062; 0,516; 05,418; 54,32,12; or 5, ,123 as legal. 

9. a. Write an EBNFdescription for structured-integer-set that specifies an integer-set 
(Section 2.6) allowing sets and ranges that use structured-integer (Section 2.4). 
b. How can ?similar coma-integer-set allowing sets and ranges that uses comma-integer 
(Exercise 8) lead to a semantic problem? 

10. Using the following rules, mite an EBNF description for train. Let letters stand 
for each car in a train: E for Engine, C for Caboose, B for Boxcar, P for Passenger car, 
and D for Dining car. The railroad has four rules telling how to form trains. 

a. Trains start with one or more Engines and end with one Caboose; neither can 
appear anywhere else. 

b. Whenever Boxcars are used, they always come in pairs: BB, BBBB, etc. 

c. There cannot be more than four Passenger cars in a series. 

d. A single dining car must follow each series of passenger cars; it cannot appear 
anywhere else. 

Train 

EC 
EEEPPDBBPDBBBBC 
EEEPPDBBPDBBBB 
EBBBC 
EEPPPPPDBBC 
EEPPBBC 
EEBBOC 

Analysis 

The smallest train 
A train showing all the cars 
Illegal by rule a - no caboose 
Illegal by rule b - 3 boxcars in a row 
Illegal by rule c - 5 passenger cars in a row 
Illegal by rule d -no dining car after passenger cars 
Illegal by rule d - dining car after box car 

11. The following message was seen on a bumper sticker: Stinks Syntax. What is the 
joke? 
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12. a. Write a directly recursive EBNF rule named mp that describes all symbols that 
have matchingparentheses: 0, 000, O ( O O ) ,  and ( ( O ) O ) ( O ( O ) ) O .  It should 
not recognize (, 0) (, or (0  0 as legal. b. Write a tabular proof and its derivation 
tree showing how 0 (0 0 is recognized as legal. 




