25

Object-Oriented Lisp

This chapter discusses object-oriented programming in Lisp. Common Lisp
includes a set of operatorsfor writing object-oriented programs. Collectively they
are called the Common Lisp Object System, or cLOS. Here we consider CLOS not
just as away of writing object-oriented programs, but as a Lisp program itself.
Seeing cLos in thislight isthe key to understanding the relation between Lisp and
object-oriented programming.

25.1 Plusc¢a Change

Object-oriented programming means achangein theway programsare organized.
This change is analogous to the one that has taken place in the distribution of
processor power. In 1970, a multi-user computer system meant one or two hig
mainframes connected to alarge number of dumb terminals. Now itismorelikely
to mean alarge number of workstations connected to one another by a network.
The processing power of the system is now distributed among individual users
instead of centralized in one big computer.

Object-oriented programming breaks up traditional programs in much the
same way: instead of having a single program which operates on an inert mass
of data, the data itself is told how to behave, and the program is implicit in the
interactions of these new data “ objects.”

For example, suppose we want to write a program to find the areas of two-
dimensional shapes. Oneway to do thiswould beto write asingle function which
looked at the type of its argument and behaved accordingly:

348
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(defun area (x)
(cond ((rectangle-p x) (* (height x) (width x)))
((circle-p x) (* pi (expt (radius x) 2)))))

The object-oriented approach is to make each object ableto calculateits own area.
The area function is broken apart and each clause distributed to the appropriate
class of object; the area method of the rectangle class might be

#’ (lambda (x) (* (height x) (width x)))
and for the circle class,
#’ (lambda (x) (* pi (expt (radius x) 2)))

In this model, we ask an object what its areais, and it responds according to the
method provided for its class.

The arrival of cLoS might seem a sign that Lisp is changing to embrace the
object-oriented paradigm. Actually, it would be more accurate to say that Lisp
is staying the same to embrace the object-oriented paradigm. But the principles
underlying Lisp don’t have a name, and object-oriented programming does, so
there is atendency now to describe Lisp as an object-oriented language. It would
be closer to thetruth to say that Lisp is an extensiblelanguage in which constructs
for object-oriented programming can easily be written.

Since CLOS comes pre-written, it is not false advertising to describe Lisp as
an object-oriented language. However, it would be limiting to see Lisp as merely
that. Lisp is an object-oriented language, yes, but not because it has adopted
the object-oriented model. Rather, that model turns out to be just one more
permutation of the abstractions underlying Lisp. And to proveit we have CLOS, a
program written in Lisp, which makes Lisp an object-oriented language.

The aim of this chapter is to bring out the connection between Lisp and
object-oriented programming by studying CLOS as an example of an embedded
language. Thisis aso agood way to understand cLos itself: in the end, nothing
explains alanguage feature more effectively than a sketch of its implementation.
In Section 7.6, macros were explained this way. The next section givesa similar
sketch of how to build object-oriented abstractions on top of Lisp. This program
provides a reference point from which to describe cLOS in Sections 25.3-25.6.

25.2 Objectsin Plain Lisp

We can mold Lisp into many different kinds of languages. Thereis aparticularly
direct mapping between the concepts of object-oriented programming and the
fundamental abstractions of Lisp. The size of cLOS tends to obscure thisfact. So
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before looking at what we can do with cLOS, let's see what we can do with plain
Lisp.

Much of what we want from object-oriented programming, we have aready
in Lisp. We can get the rest with surprisingly little code. In this section, we will
define an object system sufficient for many real applicationsin two pages of code.
Object-oriented programming, at a minimum, implies

1. objectswhich have properties

2. and respond to messages,

3. and which inherit properties and methods from their parents.

In Lisp, there are already several ways to store collections of properties.
One way would be to represent objects as hash-tables, and store their properties
as entries within them. We then have access to individual properties through
gethash:

(gethash ’color obj)

Since functions are data objects, we can store them as propertiestoo. This means
that we can a so have methods; to invoke a given method of an object isto funcall
the property of that name:

(funcall (gethash ’move obj) obj 10)
We can define a Smalltalk style message-passing syntax upon this idea:

(defun tell (obj message &rest args)
(apply (gethash message obj) obj args))

so that to tell obj to move 10 we can say
(tell obj ’move 10)

Infact, the only ingredient plain Lisp lacksisinheritance, and we can provide
arudimentary version of that in six lines of code, by defining a recursive version
of gethash:

(defun rget (obj prop)
(multiple-value-bind (val win) (gethash prop obj)
(if win
(values val win)
(let ((par (gethash ’parent obj)))
(and par (rget par prop))))))
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(defun rget (obj prop)
(some2 #’(lambda (a) (gethash prop a))
(get-ancestors obj)))

(defun get-ancestors (obj)
(labels ((getall (x)
(append (list x)
(mapcan #’getall
(gethash ’parents x)))))
(stable-sort (delete-duplicates (getall obj))
#’ (lambda (x y)
(member y (gethash ’parents x))))))

(defun some2 (fn 1lst)
(if (atom 1st)
nil
(multiple-value-bind (val win) (funcall fn (car 1lst))
(if (or val win)
(values val win)
(some2 fn (cdr 1st))))))

Figure 25.1: Multiple inheritance.

If we just use rget in place of gethash, we will get inherited properties and
methods. We specify an object’s parent thus:

(setf (gethash ’parent obj) obj2)

So far we have only single inheritance—an object can only have one parent.
But we can have multiple inheritance by making the parent property alist, and
defining rget asin Figure 25.1.

With single inheritance, when we wanted to retrieve some property of an
object, we just searched recursively up its ancestors. If the object itself had no
information about the property we wanted, we looked at its parent, and so on.
With multipleinheritance we want to perform the same kind of search, but our job
is complicated by the fact that an object’s ancestors can form a graph instead of a
simple list. We can’t just search this graph depth-first. With multiple parents we
can have the hierarchy shownin Figure 25.2; a is descended from b and c, which
are both descended from d. A depth-first (or rather, height-first) traversal would
go a, b, d, c, d. If the desired property were present in both d and ¢, we would
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Figure 25.2: Multiple paths to a superclass.

get the value stored in 4, not the one stored in c. Thiswould violate the principle
that subclasses override the default values provided by their parents.

If wewant toimplement theusual ideaof inheritance, we should never examine
an object before one of its descendants. In thiscase, the proper search order would
be a, b, ¢, d. How can we ensure that the search always tries descendants first?
The simplest way is to assemble a list of all the ancestors of the original object,
sort the list so that no object appears before one of its descendants, and then look
at each element in turn.

Thisstrategy isused by get-ancestors,whichreturnsaproperly ordered list
of anobject anditsancestors. Tosortthelist, get-ancestors callsstable-sort
instead of sort, to avoid the possibility of reordering parallel ancestors. Oncethe
list is sorted, rget merely searches for the first object with the desired property.
(The utility some?2 is aversion of some for use with functions like gethash that
indicate success or failure in the second return value.)

The list of an object’s ancestors goes from most specific to least specific: if
orange is a child of citrus, which is a child of fruit, then the list will go
(orange citrus fruit).

When an object has multiple parents, their precedence goes | eft-to-right. That
is, if we say

(setf (gethash ’parents x) (list y z))

then y will be considered before z when we look for an inherited property. For
example, we can say that a patriotic scoundrel is a scoundrel first and a patriot
second:

> (setq scoundrel (make-hash-table)
patriot (make-hash-table)
patriotic-scoundrel (make-hash-table))
#<Hash-Table C4219E>



25.2 OBJECTSIN PLAIN LISP 353

(defun obj (&rest parents)
(let ((obj (make-hash-table)))
(setf (gethash ’parents obj) parents)
(ancestors obj)
obj))

(defun ancestors (obj)
(or (gethash ’ancestors obj)
(setf (gethash ’ancestors obj) (get-ancestors obj))))

(defun rget (obj prop)
(some2 #’(lambda (a) (gethash prop a))
(ancestors obj)))

Figure 25.3: A function to create objects.

> (setf (gethash ’serves scoundrel) ’self
(gethash ’serves patriot) ’country
(gethash ’parents patriotic-scoundrel)

(1ist scoundrel patriot))

(#<Hash-Table C41C7E> #<Hash-Table C41FOE>)

> (rget patriotic-scoundrel ’serves)

SELF

T

Let’'s make someimprovementsto this skeletal system. We could beginwith a
functionto create objects. Thisfunction should build alist of an object’sancestors
at the time the object is created. The current code builds these lists when queries
are made, but there is no reason not to do it earlier. Figure 25.3 definesafunction
called obj which crestes a new object, storing within it alist of its ancestors. To
take advantage of stored ancestors, we aso redefine rget.

Another place for improvement isthe syntax of messagecalls. Thetell itself
is unnecessary clutter, and because it makes verbs come second, it means that our
programs can no longer be read like normal Lisp prefix expressions:

(tell (tell obj ’find-owner) ’find-owner)

Wecanget rid of thetel1 syntax by defining each property nameasafunction,
asin Figure 25.4. The optional argumentmeth?, if true, signalsthat this property
should be treated as amethod. Otherwiseit will be treated as a slot, and the value
retrieved by rget will simply be returned. Once we have defined the name of
either kind of property,



354 OBJECT-ORIENTED LISP

(defmacro defprop (name &optional meth?)

‘ (progn
(defun ,name (obj &rest args)
, (if meth?

¢ (run-methods obj ’,name args)
‘(rget obj ’,name)))
(defsetf ,name (obj) (val)
‘(setf (gethash ’,’,name ,obj) ,val))))

(defun run-methods (obj name args)
(let ((meth (rget obj name)))
(if meth
(apply meth obj args)
(error "No ~A method for "A." name obj))))

Figure 25.4: Functional syntax.

(defprop find-owner t)

we can refer to it with afunction call, and our code will read like Lisp again:
(find-owner (find-owner obj))

Our previous example now becomes somewhat more readable;

> (progn
(setq scoundrel (obj))
(setq patriot (obj))
(setq patriotic-scoundrel (obj scoundrel patriot))
(defprop serves)
(setf (serves scoundrel) ’self)
(setf (serves patriot) ’country)
(serves patriotic-scoundrel))
SELF

In the current implementation, an object can have at most one method of a
given name. An object either has its own method, or inherits one. It would be
convenient to have more flexibility on this point, so that we could combine local
and inherited methods. For example, we might want the move method of some
object to be the move method of its parent, but with some extra code run before

or afterwards.
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Toallow for such possihilities, we will modify our programto include before-,
after-, and around-methods. Before-methods allow us to say “But first, do this.”
They are called, most specific first, as a prelude to the rest of the method call.
After-methods allow usto say “PS. Do thistoo.” They are called, most specific
last, as an epilogue to the method call. Between them, we run what used to be the
whole method, and is now called the primary method. The value of thiscall isthe
onereturned, even if after-methods are called later.

Before- and after-methods allow us to wrap new behavior around the call to
the primary method. Around-methods provide a more drastic way of doing the
same thing. If an around-method exists, it will be called instead of the primary
method. Then, at its own discretion, the around-method may itself invoke the
primary method (via call-next, which will be provided in Figure 25.7).

To allow auxiliary methods, we modify run-methods and rget as in Fig-
ures 25.5 and 25.6. In the previous version, when we ran some method of an
object, we ran just one function: the most specific primary method. We ran the
first method we encountered when searching the list of ancestors. With auxiliary
methods, the calling sequence now goes as follows:

1. The most specific around-method, if thereis one.

2. Otherwise, in order:

(&) All before-methods, from most specific to least specific.
(b) The most specific primary method (what we used to call).
(c) All after-methods, from least specific to most specific.

Notice also that instead of being a single function, a method becomes a four-
part structure. To define a (primary) method, instead of saying:

(setf (gethash ’move obj) #’(lambda ...))

we say:
(setf (meth-primary (gethash ’move obj)) #’(lambda ...))

For this and other reasons, our next step should be to define a macro for defining
methods.

Figure 25.7 shows the definition of such a macro. The bulk of this code is
taken up with implementing two functions that methods can use to refer to other
methods. Around- and primary methods can use call-next to invoke the next
method, which is the code that would have run if the current method didn’t exist.
For example, if the currently running method is the only around-method, the next
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(defstruct meth around before primary after)

(defmacro meth- (field obj)
(let ((gobj (gensym)))
‘(let ((,gobj ,0bj))
(and (meth-p ,gobj)
(, (symb ’meth- field) ,gobj)))))

(defun run-methods (obj name args)
(let ((pri (rget obj name :primary)))

(if pri
(let ((ar (rget obj name :around)))
(if ar

(apply ar obj args)
(run-core-methods obj name args pri)))
(error "No primary ~A method for ~“A." name obj))))

(defun run-core-methods (obj name args &optional pri)
(multiple-value-progl
(progn (run-befores obj name args)
(apply (or pri (rget obj name :primary))
obj args))
(run-afters obj name args)))

(defun rget (obj prop &optional meth (skip 0))
(some2 #’ (lambda (a)

(multiple-value-bind (val win) (gethash prop a)
(if win
(case meth (:around (meth- around val))
(:primary (meth- primary val))
(t (values val win))))))
(nthcdr skip (ancestors obj))))

Figure 25.5: Auxiliary methods.

method would be the usual sandwich of before-, most specific primary, and after-
methods. Withinthe most specific primary method, the next method would be the
second most specific primary method. Since the behavior of call-next depends
on where it is called, it is never defined globally with a defun, but is defined
locally within each method defined by defmeth.
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(defun run-befores (obj prop args)
(dolist (a (ancestors obj))
(let ((bm (meth- before (gethash prop a))))
(if bm (apply bm obj args)))))

(defun run-afters (obj prop args)
(labels ((rec (1st)
(when 1lst
(rec (cdr 1lst))
(let ((am (meth- after
(gethash prop (car 1st)))))
(if am (apply am (car 1lst) args))))))
(rec (ancestors obj))))

Figure 25.6: Auxiliary methods (continued).

An around- or primary method can use next-p to check whether there is a
next method. If the current method is the primary method of an object with no
parents, for example, there would be no next method. Since call-next yields
an error when there is no next method, next-p should usualy be called to test
the waters first. Like call-next, next-p is defined locally within individual
methods.

Thenew macrodefmethisused asfollows. If wejust want to definethearea
method of the rectangle object, we say

(setq rectangle (obj))

(defprop height)

(defprop width)

(defmeth (area) rectangle (r)
(* (height r) (width r)))

Now the area of an instance s calculated according to the method of the class:

> (let ((myrec (obj rectangle)))
(setf (height myrec) 2
(width myrec) 3)
(area myrec))



358 OBJECT-ORIENTED LISP

(defmacro defmeth ((name &optional (type :primary))
obj parms &body body)
(let ((gobj (gensym)))
‘(let ((,gobj ,0bj))
(defprop ,name t)
(unless (meth-p (gethash ’,name ,gobj))
(setf (gethash ’,name ,gobj) (make-meth)))
(setf (,(symb ’meth- type) (gethash ’,name ,gobj))
, (build-meth name type gobj parms body)))))

(defun build-meth (name type gobj parms body)
(let ((gargs (gensym)))
‘#’ (lambda (&rest ,gargs)
(labels
((call-next ()
,(i1f (or (eq type :primary)
(eq type :around))
‘(cnm ,gobj ’,name (cdr ,gargs) ,type)
>(error "Illegal call-next.")))
(next-p O
, (case type
(:around
‘(or (rget ,gobj ’,name :around 1)
(rget ,gobj ’,name :primary)))
(:primary
‘(rget ,gobj ’,name :primary 1))
(t nil))))
(apply #’(lambda ,parms ,@body) ,gargs)))))

(defun cnm (obj name args type)
(case type
(:around (let ((ar (rget obj name :around 1)))
(if ar
(apply ar obj args)
(run-core-methods obj name args))))
(:primary (let ((pri (rget obj name :primary 1)))
(if pri
(apply pri obj args)
(error "No next method."))))))

Figure 25.7: Defining methods.
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(defmacro undefmeth ((name &optional (type :primary)) obj)
‘(setf (,(symb ’meth- type) (gethash ’,name ,obj))
nil))

Figure 25.8: Removing methods.

In a more complicated example, suppose we have defined a backup method for
thefilesystem object:

(setq filesystem (obj))

(defmeth (backup :before) filesystem (fs)
(format t "Remember to mount the tape.~%"))

(defmeth (backup) filesystem (fs)
(format t "Oops, deleted all your files."%")
’done)

(defmeth (backup :after) filesystem (fs)
(format t "Well, that was easy. %"))

The normal sequence of callswill be asfollows:

> (backup (obj filesystem))
Remember to mount the tape.
Oops, deleted all your files.
Well, that was easy.

DONE

L ater we want to know how long backupstake, so we definethefollowing around-
method:

(defmeth (backup :around) filesystem (fs)
(time (call-next)))

Now whenever backup is called on achild of filesystem (unless more specific
around-methods intervene) our around-method will be caled. It calls the code
that would ordinarily runin acall to backup, but withinacall to time. Thevaue
returned by time will be returned as the value of the call to backup:

> (backup (obj filesystem))
Remember to mount the tape.
Oops, deleted all your files.
Well, that was easy.

Elapsed Time = .01 seconds
DONE
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Once we are finished timing the backups, we will want to remove the around-
method. That can be done by calling undefmeth (Figure 25.8), which takes the
same first two arguments as defmeth:

(undefmeth (backup :around) filesystem)

Another thing we might want to alter is an object’s list of parents. But after
any such change, we should also update the list of ancestors of the object and al
its children. So far, we have no way of getting from an object to its children, so
we must also add a children property.

Figure 25.9 contains code for operating on objects parents and children.
Instead of getting at parents and children via gethash, we use the operators
parents and children. The latter is a macro, and therefore transparent to
setf. The former is a function whose inversion is defined by defsetf to be
set-parents, which does everything needed to maintain consistency in the new
doubly-linked world.

To update the ancestors of al the objects in a subtree, set-parents cals
maphier, which is like a mapc for inheritance hierarchies. As mapc calls a
function on every element of a list, maphier calls a function on an object and
all its descendants. Unless they form a proper tree, the function could get called
more than once on some objects. Herethisis harmless, because get-ancestors
does the same thing when called multiple times.

Now we can dter the inheritance hierarchy just by using setf on an object’s
parents:

> (progn (pop (parents patriotic-scoundrel))
(serves patriotic-scoundrel))

COUNTRY

T

When the hierarchy is modified, affected lists of children and ancestors will be
updated automatically. (The children are not meant to be manipulated directly,
but they could be if we defined a set-children analogous to set-parents.)
The last function in Figure 25.9 is obj redefined to use the new code.

As afinal improvement to our system, we will make it possible to specify
new ways of combining methods. Currently, the only primary method that gets
called is the most specific (though it can call othersvia call-next). Instead we
might like to be able to combine the results of the primary methods of each of an
object’s ancestors. For example, suppose that my-orange is a child of orange,
which isachild of citrus. If the props method returns (round acidic) for
citrus, (orange sweet) for orange, and (dented) for my-orange, it would
be convenient to be able to make (props my-orange) return the union of all
thesevalues: (dented orange sweet round acidic).
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(defmacro children (obj)
‘(gethash ’children ,obj))

(defun parents (obj)
(gethash ’parents obj))

(defun set-parents (obj pars)
(dolist (p (parents obj))
(setf (children p)
(delete obj (children p))))
(setf (gethash ’parents obj) pars)
(dolist (p pars)
(pushnew obj (children p)))
(maphier #’(lambda (obj)
(setf (gethash ’ancestors obj)
(get-ancestors obj)))
obj)
pars)

(defsetf parents set-parents)

(defun maphier (fn obj)
(funcall fn obj)
(dolist (c (children obj))
(maphier fn c)))

(defun obj (&rest parents)
(let ((obj (make-hash-table)))
(setf (parents obj) parents)
obj))

Figure 25.9: Maintaining parent and child links.

We could havethisif we allowed methodsto apply some functionto the values
of all the primary methods, instead of just returning the value of the most specific.
Figure 25.10 contains a macro which allows us to define the way methods are
combined, and anew version of run-core-methods which can perform method
combination.

We define the form of combination for a method via def comb, which takes
a method name and a second argument describing the desired combination. Or-
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(defmacro defcomb (name op)
‘ (progn
(defprop ,name t)
(setf (get ’,name ’mcombine)
, (case op
(:standard nil)
(:progn ’#’(lambda (&rest args)
(car (last args))))

(t op)))))

(defun run-core-methods (obj name args &optional pri)
(let ((comb (get name ’mcombine)))
(if comb
(if (symbolp comb)
(funcall (case comb (:and #’comb-and)
(tor #’comb-or))
obj name args (ancestors obj))
(comb-normal comb obj name args))
(multiple-value-progl
(progn (run-befores obj name args)
(apply (or pri (rget obj name :primary))
obj args))
(run-afters obj name args)))))

(defun comb-normal (comb obj name args)
(apply comb
(mapcan #’(lambda (a)
(let* ((pm (meth- primary
(gethash name a)))
(val (if pm
(apply pm obj args))))
(if val (list val))))
(ancestors obj))))

Figure 25.10: Method combination.

dinarily this second argument should be a function. However, it can also be one
of :progn, :and, :or, Or :standard. With the former three, primary meth-
ods will be combined as though according to the corresponding operator, while
: standard indicates that we want the traditional way of running methods.
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(defun comb-and (obj name args ancs &optional (last t))
(if (null ancs)

last
(let ((pm (meth- primary (gethash name (car ancs)))))
(if pm
(let ((new (apply pm obj args)))

(and new
(comb-and obj name args (cdr ancs) new)))
(comb-and obj name args (cdr ancs) last)))))

(defun comb-or (obj name args ancs)
(and ancs
(let ((pm (meth- primary (gethash name (car ancs)))))
(or (and pm (apply pm obj args))
(comb-or obj name args (cdr ancs))))))

Figure 25.11: Method combination (continued).

The central function in Figure 25.10 is the new run-core-methods. If the
method being called has nomcombine property, then the method call proceeds as
before. Otherwise the mcombine of the method is either a function (like +) or a
keyword (like :or). In the former case, the function is just applied to a list of
the values returned by all the primary methods.? In the latter, we use the function
associated with the keyword to iterate over the primary methods.

The operators and and or have to be treated specialy, as in Figure 25.11.
They get special treatment not just because they are special forms, but because
they short-circuit evaluation:

> (or 1 (princ "wahoo"))
1

Herenothingisprinted becausethe or returnsassoon asit seesanon-nil argument.
Similarly, a primary method subject to or combination should never get called if
amore specific method returnstrue. To provide such short-circuiting for and and
or, we use the distinct functions comb-and and comb-or.

To implement our previous example, we would write:

(setq citrus (obj))
(setq orange (obj citrus))

1A more sophisticated version of this code could use reduce to avoid consing here.
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(setq my-orange (obj orange))

(defmeth (props) citrus (c) ’(round acidic))
(defmeth (props) orange (o) ’(orange sweet))
(defmeth (props) my-orange (m) ’(dented))

(defcomb props #’(lambda (&rest args) (reduce #’union args)))
after which props would return the union of all the primary method val ues: 2

> (props my-orange)
(DENTED ORANGE SWEET ROUND ACIDIC)

Incidentally, thisexampl e suggests a choicethat you only have when doing object-
oriented programming in Lisp: whether to store information in slots or methods.

Afterward, if we wanted the props method to return to the default behavior,
we just set the method combination back to standard:

> (defcomb props :standard)
NIL

> (props my-orange)
(DENTED)

Note that before- and after-methods only run in standard method combination.
However, around-methods work the same as before.

The program presented in this section is intended as a model, not as a real
foundation for object-oriented programming. It was written for brevity rather
than efficiency. However, it is at least aworking model, and so could be used for
experimentsand prototypes. If you do want to use the program for such purposes,
one minor change would make it much more efficient: don’t calculate or store
ancestor lists for objects with only one parent.

25.3 Classesand Instances

The program in the previous section was written to resemble CLOS as closely as
such asmall program could. By understandingit weareaready afair way towards
understanding cLOS. In the next few sections we will examine cLoS itself.

In our sketch, we made no syntactic distinction between classes and instances,
or between dots and methods. In cLOS, we use the defclass macro to define a
class, and we declare the slotsin alist at the sametime:

2Since the combination function for props calls union, the list elements will not necessarily be
in this order.
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(defclass circle ()
(radius center))

This expression says that the circle class has no superclasses, and two slots,
radius and center. We can make an instance of the circle class by saying:

(make-instance ’circle)

Unfortunately, we have defined no way of referring to the lots of acircle, so
any instance we make is going to be rather inert. To get at a slot we define an
accessor function for it:

(defclass circle ()
((radius :accessor circle-radius)
(center :accessor circle-center)))

Now if we make an instance of acircle, we can set itsradius and center slots
by using setf with the corresponding accessor functions:

> (setf (circle-radius (make-instance ’circle)) 2)
2

We can do this kind of initialization right in the call to make-instance if we
define the slotsto alow it:

(defclass circle ()
((radius :accessor circle-radius :initarg :radius)
(center :accessor circle-center :initarg :center)))

The: initarg keywordinasl ot definition saysthat thefoll owing argument should
become a keyword parameter in make-instance. The value of the keyword
parameter will becometheinitial value of the dlot:

> (circle-radius (make-instance ’circle
:radius 2
:center ’(0 . 0)))

By declaring an :initform, we can also define slots which initialize them-
selves. Thevisible slot of the shape class

(defclass shape ()
((color :accessor shape-color :initarg :color)
(visible :accessor shape-visible :initarg :visible
:initform t)))
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will be set to t by default:

> (shape-visible (make-instance ’shape))
T

If adlot has both an initarg and an initform, the initarg takes precedence when it
is specified:

> (shape-visible (make-instance ’shape :visible nil))

NIL

Slots are inherited by instances and subclasses. If a class has more than
one superclass, it inherits the union of their dots. So if we define the class
screen-circle to be asubclass of both circle and shape,

(defclass screen-circle (circle shape)
nil)

then instances of screen-circle will have four slots, two inherited from each
grandparent. Notethat aclass doesnot haveto create any new dotsof itsown; this
class exists just to provide something instantiable that inheritsfrom both circle
and shape.

The accessors and initargs work for instances of screen-circle just asthey
would for instances of circle or shape:

> (shape-color (make-instance ’screen-circle
:color ’red :radius 3))
RED

We can cause every screen-circle to have some default initial color by
specifying an initform for thisdot inthedefclass:

(defclass screen-circle (circle shape)
((color :initform ’purple)))

Now instances of screen-circle will be purple by default,

> (shape-color (make-instance ’screen-circle))
PURPLE

though it is still possible to initialize the ot otherwise by giving an explicit
:color initarg.

In our sketch of object-oriented programming, instances inherited values di-
rectly from the dots in their parent classes. In CLOS, instances do not have slots
in the same way that classes do. We define an inherited default for instances by
defining aninitform in the parent class. In away, thisis moreflexible, because as
well as being a constant, an initform can be an expression that returns a different
value each timeit is evaluated:
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(defclass random-dot ()
((x :accessor dot-x :initform (random 100))
(y :accessor dot-y :initform (random 100))))

Each time we make an instance of a random-dot its x- and y-position will be a
random integer between 0 and 99:

> (mapcar #’(lambda (name)
(let ((rd (make-instance ’random-dot)))
(1ist name (dot-x rd) (dot-y rd))))
’(first second third))
((FIRST 25 8) (SECOND 26 15) (THIRD 75 59))

In our sketch, we also made no distinction between slots whose values were
to vary from instance to instance, and those which were to be constant across the
whole class. In cLOS we can specify that some dots are to be shared—that is,
their value is the same for every instance. We do this by declaring the ot to
have :allocation :class. (Thedternativeisfor aslot to have :allocation
:instance, but sincethisisthe default there is no need to say so explicitly.) For
example, if all owls are nocturnal, then we can make the nocturnal dot of the
owl classashared slot, and giveit theinitial value t:

(defclass owl ()
((nocturnal :accessor owl-nocturnal
:initform t
:allocation :class)))

Now every instance of the owl class will inherit this dlot:

> (owl-nocturnal (make-instance ’owl))
T

If we change the “local” value of this dlot in an instance, we are actually atering
the value stored in the class:

> (setf (owl-nocturnal (make-instance ’owl)) ’maybe)
MAYBE

> (owl-nocturnal (make-instance ’owl))

MAYBE

This could cause some confusion, so we might like to make such a slot read-
only. When we define an accessor function for a slot, we create a way of both
reading and writing the dlot’s value. If we want the value to be readable but
not writable, we can do it by giving the slot just a reader function, instead of a
full-fledged accessor function:
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(defclass owl ()
((nocturnal :reader owl-nocturnal
:initform t
:allocation :class)))

Now attempts to alter thenocturnal dot of aninstance will generate an error:

> (setf (owl-nocturnal (make-instance ’owl)) nil)
>>Error: The function (SETF OWL-NOCTURNAL) is undefined.

254 Methods

Our sketch emphasized the similarity between slots and methods in a language
which provides lexical closures. In our program, a primary method was stored
and inherited in the same way as a slot value. The only difference between a slot
and amethod was that defining a name as aslot by

(defprop area)

made area a function which would simply retrieve and return a value, while
defining it as amethod by

(defprop area t)

made area a function which would, after retrieving a value, funcall it on its
arguments.

IncLosthefunctional unitsare still called methods, and it is possibleto define
them so that they each seem to be a property of some class. Here we define an
area method for the circle class:

(defmethod area ((c circle))
(* pi (expt (circle-radius c) 2)))

The parameter list for this method saysthat it is afunction of one argument which
appliesto instances of the circle class.
We invoke this method like afunction, just asin our sketch:

> (area (make-instance ’circle :radius 1))
3.14. ..

We can also define methods that take additional arguments:

(defmethod move ((c circle) dx dy)
(incf (car (circle-center c)) dx)
(incf (cdr (circle-center c)) dy)
(circle-center c))
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If we call this method on an instance of circle, its center will be shifted by
(dx,dy):

> (move (make-instance ’circle :center (1 . 1)) 2 3)
(3 . 4)

The value returned by the method reflects the circle’s new position.

As in our sketch, if there is a method for the class of an instance, and for
superclasses of that class, the most specific one runs. So if unit-circleisa
subclass of circle, with the following area method

(defmethod area ((c unit-circle)) pi)

then this method, rather than the more general one, will run when we call area
onaninstance of unit-circle

When a class has multiple superclasses, their precedencerunsleft to right. By
defining the class patriotic-scoundrel asfollows

(defclass scoundrel nil nil)
(defclass patriot nil nil)
(defclass patriotic-scoundrel (scoundrel patriot) nil)

we specify that patriotic scoundrelsare scoundrel sfirst and patriots second. When
there is an applicable method for both superclasses,

(defmethod self-or-country? ((s scoundrel))
’self)

(defmethod self-or-country? ((p patriot))
>country)

the method of the scoundrel class will run:

> (self-or-country? (make-instance ’patriotic-scoundrel))
SELF

The examples so far maintain the illusion that cLos methods are methods of
some object. In fact, they are something more general. In the parameter list of
the move method, the element (¢ circle) is called a specialized parameter; it
saysthat this method applies when the first argument to move is an instance of the
circleclass. InacLosmethod, morethan oneparameter canbespecialized. The
following method has two specialized and one optional unspecialized parameter:
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(defmethod combine ((ic ice-cream) (top topping)
&optional (where :here))
(append (list (name ic) ’ice-cream)
(list ’with (name top) ’topping)
(list ’in ’a
(case where
(:here ’glass)
(:to-go ’styrofoam))
’dish)))

Itisinvoked when thefirst two argumentsto combine areinstancesof ice-cream
and topping, respectively. If we define some minimal classes to instantiate

(defclass stuff () ((name :accessor name :initarg :name)))
(defclass ice-cream (stuff) nil)
(defclass topping (stuff) nil)

then we can define and run this method:

> (combine (make-instance ’ice-cream :name ’fig)
(make-instance ’topping :name ’olive)
:here)

(FIG ICE-CREAM WITH OLIVE TOPPING IN A GLASS DISH)

When methods specialize more than one of their parameters, it is difficult
to continue to regard them as properties of classes. Does our combine method
belong to the ice-cream class or the topping class? In cLOS, the model of
objects responding to messages simply evaporates. This model seems natural so
long as we invoke methods by saying something like:

(tell obj ’move 2 3)

Then we are clearly invoking the move method of obj. But once we drop this
syntax in favor of afunctional equivalent:

(move obj 2 3)

then we have to define move so that it dispatches on its first argument—that is,
looks at the type of the first argument and calls the appropriate method.

Once we havetaken this step, the question arises: why only allow dispatching
on the first argument? CLOS answers. why indeed? In cLOS, methods can
specialize any number of their parameters—and not just on user-defined classes,
but on Common Lisp types,® and even on individual objects. Hereis a combine
method that appliesto strings:

30r more precisely, on the type-like classes that cLOs defines in parallel with the Common Lisp
type hierarchy.
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(defmethod combine ((sl string) (s2 string) &optional int?)
(let ((str (concatenate ’string si1 s2)))
(if int? (intern str) str)))

Which means not only that methods are no longer properties of classes, but that
we can use methods without defining classes at all.

> (combine "I am not a " "cook.")
"I am not a cook."

Here the second parameter is specialized on the symbol palindrome:

(defmethod combine ((sl sequence) (x (eql ’palindrome))
&optional (length :odd))
(concatenate (type-of s1)
si
(subseq (reverse sl)
(case length (:odd 1) (:even 0)))))

This particular method makes palindromes of any kind of sequence elements: 4

> (combine ’(able was i ere) ’palindrome)
(ABLE WAS I ERE I WAS ABLE)

At this point we no longer have object-oriented programming, but something
more general. CLOS is designed with the understanding that beneath methods
thereis this concept of dispatch, which can be done on more than one argument,
and can be based on more than an argument’sclass. When methods are built upon
this more general notion, they become independent of individual classes. Instead
of adhering conceptually to classes, methods now adhere to other methods with
the same name. In cLos such aclump of methodsis called ageneric function. All
our combine methodsimplicitly define the generic function combine.

We can define generic functions explicitly with the defgeneric macro. It
is not necessary to call defgeneric to define a generic function, but it can be a
convenient place to put documentation, or some sort of safety-net for errors. Here
we do both:

(defgeneric combine (x y &optional z)
(:method (x y &optional z)
"I can’t combine these arguments.")
(:documentation "Combines things."))

“4In one (otherwise excellent) Common Lisp implementation, concatenate will not accept cons
asitsfirst argument, so this call will not work.



372 OBJECT-ORIENTED LISP

Since the method given here for combine doesn’'t specialize any of its arguments,
it will be the one called in the event no other method is applicable.

> (combine #’expt "chocolate")
"I can’t combine these arguments."

Before, this call would have generated an error.

Generic functions impose one restriction that we don’t have when methods
are properties of objects: when all methods of the same name get joined into one
generic function, their parameter lists must agree. That’'s why all our combine
methods had an additional optional parameter. After defining the first combine
method to take up to three arguments, it woul d have caused an error if we attempted
to define another which only took two.

CLos requires that the parameter lists of all methods with the same name be
congruent. Two parameter lists are congruent if they have the same number of
required parameters, the same number of optional parameters, and compatible use
of &rest and &key. Theactual keyword parametersaccepted by different methods
need not be the same, but defgeneric can insist that all its methods accept a
certain minimal set. The following pairs of parameter lists are all congruent:

(x) (a)

(x &optional y) (a &optional b)
(x y &rest z) (a b &rest c)
(x y &rest z) (a b &key c d)

and the following pairs are not:

(x) (a b)

(x &optional y) (a &optional b c)
(x &optional y) (a &rest b)

(x &key x y) (a)

Redefining methods is just like redefining functions. Since only required
parameters can be specialized, each method is uniquely identified by its generic
function and the types of its required parameters. If we define another method
with the same specializations, it overwritesthe original one. So by saying:

(defmethod combine ((x string) (y string)
&optional ignore)
(concatenate ’string x " + " y))

we redefine what combine does when its first two arguments are strings.
Unfortunately, if instead of redefining a method we want to remove it, there
is no built-in converse of defmethod. Fortunately, thisis Lisp, so we can write
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(defmacro undefmethod (name &rest args)
(if (consp (car args))
(udm name nil (car args))
(udm name (list (car args)) (cadr args))))

(defun udm (name qual specs)
(let ((classes (mapcar #’(lambda (s)
‘(find-class ’,s))
specs)))
¢ (remove-method (symbol-function ’,name)
(find-method (symbol-function ’,name)
’,qual
(1ist ,@classes)))))

Figure 25.12: Macro for removing methods.

one. The details of how to remove a method by hand are summarized in the
implementation of undefmethod in Figure 25.12. We use this macro by giving
arguments similar to those we would give to defmethod, except that instead of
giving a whole parameter list as the second or third argument, we give just the
class-names of the required parameters. So to remove the combine method for
two strings, we say:

(undefmethod combine (string string))

Unspecialized arguments are implicitly of class t, so if we had defined a method
with required but unspecialized parameters:

(defmethod combine ((fn function) x &optional y)
(funcall fn x y))

we could get rid of it by saying
(undefmethod combine (function t))

If we want to remove a whole generic function, we can do it the same way we
would remove the definition of any function, by calling fmakunbound:

(fmakunbound ’combine)
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25.5 Auxiliary Methods and Combination

Auxiliary methods worked in our sketch basically as they do in cLos. So far we
have seen only primary methods, but we can also have before-, after- and around-
methods. Such auxiliary methods are defined by putting a qualifying keyword
after the method name in the call to defmethod. If we define a primary speak
method for the speaker class asfollows:

(defclass speaker nil nil)

(defmethod speak ((s speaker) string)
(format t "“A" string))

Then caling speak with an instance of speaker just printsthe second argument:

> (speak (make-instance ’speaker)

"life is not what it used to be")
life is not what it used to be
NIL

By defining a subclass intellectual which wraps before- and after-methods
around the primary speak method,

(defclass intellectual (speaker) nil)

(defmethod speak :before ((i intellectual) string)
(princ "Perhaps "))

(defmethod speak :after ((i intellectual) string)
(princ " in some sense"))

we can create a subclass of speakers which always have the last (and the first)
word:

> (speak (make-instance ’intellectual)

"life is not what it used to be")
Perhaps life is not what it used to be in some sense
NIL

In standard method combination, the methods are called as described in our
sketch: all the before-methods, most specific first, then the most specific primary
method, then all the after-methods, most specific last. So if we define before- or
after-methods for the speaker superclass,
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(defmethod speak :before ((s speaker) string)
(princ "I think "))

they will get called in the middle of the sandwich:

> (speak (make-instance ’intellectual)

"life is not what it used to be")
Perhaps I think life is not what it used to be in some sense
NIL

Regardless of what before- or after-methods get called, the value returned by the
generic function is the value of the most specific primary method—in this case,
thenil returned by format.

This changesif there are around-methods. If one of the classesin an object’s
family tree hasan around-method—or more precisely, if thereisan around-method
specialized for the arguments passed to the generic function—the around-method
will get called first, and therest of the methodswill only runif the around-method
decides to let them. Asin our sketch, an around- or primary method can invoke
the next method by calling a function: the function we defined as call-next is
incLos caled call-next-method. Thereisaso anext-method-p, analogous
to our next-p. With around-methodswe can define another subclass of speaker
which is more circumspect:

(defclass courtier (speaker) nil)

(defmethod speak :around ((c courtier) string)
(format t "Does the King believe that "A? " string)
(if (eq (read) ’yes)
(if (next-method-p) (call-next-method))
(format t "Indeed, it is a preposterous idea.”%"))
>bow)

When the first argument to speak is an instance of the courtier class, the
courtier’stongue is now guarded by the around-method:

> (speak (make-instance ’courtier) "kings will last")
Does the King believe that kings will last? yes

I think kings will last

BOW

> (speak (make-instance ’courtier) "the world is round")
Does the King believe that the world is round? no
Indeed, it is a preposterous idea.

BOW
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Note that, unlike before- and after-methods, the value returned by the around-
method is returned as the value of the generic function.

Generaly, methods are run as in this outline, which is reprinted from Sec-
tion 25.2:

1. The most specific around-method, if thereis one.

2. Otherwise, in order:

(&) All before-methods, from most specific to least specific.
(b) The most specific primary method.
(c) All after-methods, from least specific to most specific.

This way of combining methods is called standard method combination. Asin
our sketch, it is possible to define methods which are combined in other ways:
for example, for ageneric function to return the sum of al the applicable primary
methods.

In our program, we specified how to combine methods by calling def comb.
By default, methods were combined as in the outline above, but by saying, for
example,

(defcomb price #’+)

we could cause the function price to return the sum of all the applicable primary
methods.

In cLos thisis called operator method combination. Asin our program, such
method combination can be understood asiif it resulted in the evaluation of aLisp
expression whose first element was some operator, and whose arguments were
calls to the applicable primary methods, in order of specificity. If we defined the
price generic function to combine values with +, and there were no applicable
around-methods, it would behave as though it were defined:

(defun price (&rest args)
(+ (apply (most specific primary method) args)

(apply (least specific primary method) args)))

If there are applicable around-methods, they take precedence, just as in standard
method combination. Under operator method combination, an around-method can
still call the next method via call-next-method. However, primary methods
can no longer use call-next-method. (Thisis a difference from our sketch,
where we left call-next available to such methods.)
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In cLos, we can specify the type of method combination to be used by a
generic function by giving the optional :method-combination argument to
defgeneric:

(defgeneric price (x)
(:method-combination +))

Now the price method will use + method combination. If we define some classes
with prices,

(defclass jacket nil nil)
(defclass trousers nil nil)
(defclass suit (jacket trousers) nil)

(defmethod price + ((jk jacket)) 350)
(defmethod price + ((tr trousers)) 200)

then when we ask for the price of an instance of suit, we get the sum of the
applicable price methods:

> (price (make-instance ’suit))
550

The following symbols can be used as the second argument to defmethod or in
the :method-combination option to defgeneric:

+ and append 1list max min nconc or progn

By calling def ine-method-combination you can define other kinds of method
combination; see CLTL2, p. 830.

Once you specify the method combination a generic function should use, all
methods for that function must use the same kind. Now it would cause an error if
we tried to use another operator (or :before or : after) as the second argument
inadefmethod for price. If we do want to change the method combination of
price we must remove the whole generic function by calling fmakunbound.

256 CLOSandLisp

CLos makes a good example of an embedded language. This kind of program
usualy brings two rewards:

1. Embedded languages can be conceptually well-integrated with their envi-
ronment, so that within the embedded language we can continueto think of
programsin much the same terms.
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2. Embedded languages can be powerful, because they take advantage of all
the things that the base language already knows how to do.

CLos wins on both counts. It is very well-integrated with Lisp, and it makes
good use of the abstractions that Lisp has already. Indeed, we can often see Lisp
through cLos, the way we can see the shapes of objects through a sheet draped
over them.

It is no accident that we usually speak to cLos through a layer of macros.
Macrosdotransformation, and cLosisessentially aprogram which takesprograms
built out of object-oriented abstractions, and translates them into programs built
out of Lisp abstractions.

As the first two sections suggested, the abstractions of object-oriented pro-
gramming map so neatly onto those of Lisp that one could almost call the former
aspecial case of thelatter. The objects of object-oriented programming can easily
be implemented as Lisp objects, and their methods as lexical closures. By taking
advantage of such isomorphisms, we were able to provide a rudimentary form of
object-oriented programming in just a few lines of code, and a sketch of cLos in
afew pages.

CLosisagreat deal larger and more powerful than our sketch, but not so large
asto disguiseitsroots as an embedded language. Takedefmethod asan example.
Though cLTL2 does not mention it explicitly, cLos methods have all the power of
lexical closures. If we define several methods within the scope of some variable,

(let ((transactions 0))

(defmethod withdraw ((a account) amt)
(incf transactions)
(decf (balance a) amt))

(defmethod deposit ((a account) amt)
(incf transactions)
(incf (balance a) amt))

(defun transactions ()
transactions))

then at runtime they will share accessto the variable, just like closures. Methods
can do this because, underneath the syntax, they are closures. In the expansion
of adefmethod, its body appears intact in the body of a sharp-quoted lambda-
expression.

Section 7.6 suggested that it was easier to conceive of how macros work than
what they mean. Likewise, the secret to understanding CLOS is to understand how
it maps onto the fundamental abstractions of Lisp.
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25.7 When to Object

The object-oriented style provides several distinct benefits. Different programs
need these benefits to varying degrees. At one end of the continuum there are
programs—simulations, for example—which are most naturally expressed in the
abstractions of object-oriented programming. At the other end are programs
written in the object-oriented style mainly to make them extensible.

Extensibility is indeed one of the great benefits of the object-oriented style.
Instead of being a single monoalithic blob of code, a program is written in small
pieces, each labelled with its purpose. So later when someone else wants to
modify the program, it will be easy to find the part that needs to be changed. If
we want to change the way that objects of type ob are displayed on the screen, we
change the display method of the ob class. If we want to make a new class of
objects like obs but different in afew respects, we can create a subclass of ob; in
the subclass, we change the properties we want, and all the rest will be inherited
by default from the ob class. And if we just want to make a single ob which
behaves differently from the rest, we can create anew child of ob and modify the
child’'s propertiesdirectly. If the program was written carefully to begin with, we
can make all these types of modifications without even looking at the rest of the
code. From this point of view, an object-oriented program is a program organized
like a table: we can change it quickly and safely by looking up the appropriate
entry.

Extensibility demands the least from the object-oriented style. In fact, it
demands so little that an extensible program might not need to be object-oriented
at al. If the preceding chapters have shown anything, they have shown that Lisp
programs do not have to be monolithic blobs of code. Lisp offers awhole range
of optionsfor extensibility. For example, you could quiteliterally have aprogram
organized like atable: aprogram which consisted of a set of closuresstored in an
array.

If it's extensibility you need, you don’t have to choose between an “object-
oriented” and a “traditional” program. You can give a Lisp program exactly
the degree of extensibility it needs, often without resorting to object-oriented
techniques. A dotinaclassis aglobal variable. And just as it is inelegant to
use a global variable where you could use a parameter, it could be inelegant to
build aworld of classes and instances when you could do the same thing with less
effort in plain Lisp. With the addition of cLos, Common Lisp has become the
most powerful object-oriented language in widespread use. Ironicaly, it is also
the language in which object-oriented programming is least necessary.



380 OBJECT-ORIENTED LISP





