
24

Prolog

This chapter describes how to write Prolog as an embedded language. Chapter 19
showed how to write a program which answered complex queries on databases.
Here we add one new ingredient: rules, which make it possible to infer facts from
those already known. A set of rules defines a tree of implications. In order to use
rules which would otherwise imply an unlimited number of facts, we will search
this implication tree nondeterministically.

Prolog makes an excellent example of an embedded language. It combines
three ingredients: pattern-matching, nondeterminism, and rules. Chapters 18
and 22 give us the first two independently. By building Prolog on top of the
pattern-matching and nondeterministic choice operators we have already, we will
have an example of a real, multi-layer bottom-up system. Figure 24.1 shows the
layers of abstraction involved.

The secondary aim of this chapter is to study Prolog itself. For experienced
programmers, the most convenient explanation of Prolog may be a sketch of its
implementation. Writing Prolog in Lisp is particularly interesting, because it
brings out the similarities between the two languages.

24.1 Concepts

Chapter 19 showed how to write a database system which would accept complex
queries containing variables, and generate all the bindings which made the query
true in the database. In the following example, (after calling clear-db) we assert
two facts and then query the database:

321

322 PROLOG

Figure 24.1: Layers of abstraction.

> (fact painter reynolds)
(REYNOLDS)
> (fact painter gainsborough)
(GAINSBOROUGH)
> (with-answer (painter ?x)

(print ?x))
GAINSBOROUGH
REYNOLDS
NIL

Conceptually, Prolog is the database program with the addition of rules, which
make it possible to satisfy a query not just by looking it up in the database, but by
inferring it from other known facts. For example, if we have a rule like:

If (hungry ?x) and (smells-of ?x turpentine)
Then (painter ?x)

then the query (painter ?x) will be satisfied for ?x = raoulwhen the database
contains both (hungry raoul) and (smells-of raoul turpentine), even
if it doesn’t contain (painter raoul).

In Prolog, the if-part of a rule is called the body, and the then-part the head.
(In logic, the names are antecedent and consequent, but it is just as well to have
separate names, to emphasize that Prolog inference is not the same as logical
implication.) When trying to establish bindings1 for a query, the program looks
first at the head of a rule. If the head matches the query that the program is trying
to answer, the program will then try to establish bindings for the body of the rule.
Bindings which satisfy the body will, by definition, satisfy the head.

The facts used in the body of the rule may in turn be inferred from other rules:

1Many of the concepts used in this chapter, including this sense of bindings, are explained in
Section 18.4.

24.2 AN INTERPRETER 323

If (gaunt ?x) or (eats-ravenously ?x)
Then (hungry ?x)

and rules may be recursive, as in:

If (surname ?f ?n) and (father ?f ?c)
Then (surname ?c ?n)

Prolog will be able to establish bindings for a query if it can find some path
through the rules which leads eventually to known facts. So it is essentially a
search engine: it traverses the tree of logical implications formed by the rules,
looking for a successful path.

Though rules and facts sound like distinct types of objects, they are conceptu-
ally interchangeable. Rules can be seen as virtual facts. If we want our database
to reflect the discovery that big, fierce animals are rare, we could look for all the
x such that there are facts (species x), (big x), and (fierce x), and add a
new fact (rare x). However, by defining a rule to say

If (species ?x) and (big ?x) and (fierce ?x)
Then (rare ?x)

we get the same effect, without actually having to add all the (rare x) to the
database. We can even define rules which imply an infinite number of facts. Thus
rules make the database smaller at the expense of extra processing when it comes
time to answer questions.

Facts, meanwhile, are a degenerate case of rules. The effect of any fact F
could be duplicated by a rule whose body was always true:

If true
Then F

To simplify our implementation, we will take advantage of this principle and
represent facts as bodyless rules. ◦

24.2 An Interpreter

Section 18.4 showed two ways to define if-match. The first was simple but
inefficient. Its successor was faster because it did much of its work at compile-
time. We will follow a similar strategy here. In order to introduce some of the
topics involved, we will begin with a simple interpreter. Later we will show how
to write the same program much more efficiently.

324 PROLOG

(defmacro with-inference (query &body body)
‘(progn

(setq *paths* nil)
(=bind (binds) (prove-query ’,(rep_ query) nil)
(let ,(mapcar #’(lambda (v)

‘(,v (fullbind ’,v binds)))
(vars-in query #’atom))

,@body
(fail)))))

(defun rep_ (x)
(if (atom x)

(if (eq x ’_) (gensym "?") x)
(cons (rep_ (car x)) (rep_ (cdr x)))))

(defun fullbind (x b)
(cond ((varsym? x) (aif2 (binding x b)

(fullbind it b)
(gensym)))

((atom x) x)
(t (cons (fullbind (car x) b)

(fullbind (cdr x) b)))))

(defun varsym? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\?)))

Figure 24.2: Toplevel macro.

Figures 24.2–24.4 contain the code for a simple Prolog interpreter. It ac-
cepts the same queries as the query interpreter of Section 19.3, but uses rules
instead of the database to generate bindings. The query interpreter was invoked
through a macro called with-answer. The interface to the Prolog interpreter
will be through a similar macro, called with-inference. Like with-answer,
with-inference is given a query and a series of Lisp expressions. Variables in
the query are symbols beginning with a question mark:

(with-inference (painter ?x)
(print ?x))

A call to with-inference expands into code that will evaluate the Lisp expres-
sions for each set of bindings generated by the query. The call above, for example,

24.2 AN INTERPRETER 325

will print each x for which it is possible to infer (painter x). ◦
Figure 24.2 shows the definition of with-inference, together with the func-

tion it calls to retrieve bindings. One notable difference between with-answer
and with-inference is that the former simply collected all the valid bindings.
The new program searches nondeterministically. We see this in the definition of
with-inference: instead of expanding into a loop, it expands into code which
will return one set of bindings, followed by a fail to restart the search. This
gives us iteration implicitly, as in:

> (choose-bind x ’(0 1 2 3 4 5 6 7 8 9)
(princ x)
(if (= x 6) x (fail)))

0123456
6

The function fullbind points to another difference between with-answer
andwith-inference. Tracing back through a series of rules can build up binding
lists in which the binding of a variable is a list of other variables. To make use of
the results of a query we now need a recursive function for retrieving bindings.
This is the purpose of fullbind:

> (setq b ’((?x . (?y . ?z)) (?y . foo) (?z . nil)))
((?X ?Y . ?Z) (?Y . FOO) (?Z))
> (values (binding ’?x b))
(?Y . ?Z)
> (fullbind ’?x b)
(FOO)

Bindings for the query are generated by a call toprove-query in the expansion
of with-inference. Figure 24.3 shows the definition of this function and the
functions it calls. This code is structurally isomorphic to the query interpreter
described in Section 19.3. Both programs use the same functions for matching,
but where the query interpreter used mapping or iteration, the Prolog interpreter
uses equivalent chooses.

Using nondeterministic search instead of iteration does make the interpretation
of negated queries a bit more complex. Given a query like

(not (painter ?x))

the query interpreter could just try to establish bindings for (painter ?x),
returning nil if any were found. With nondeterministic search we have to be
more careful: we don’t want the interpretation of (painter ?x) to fail back
outside the scope of the not, nor do we want it to leave saved paths that might

326 PROLOG

(=defun prove-query (expr binds)
(case (car expr)
(and (prove-and (cdr expr) binds))
(or (prove-or (cdr expr) binds))
(not (prove-not (cadr expr) binds))
(t (prove-simple expr binds))))

(=defun prove-and (clauses binds)
(if (null clauses)

(=values binds)
(=bind (binds) (prove-query (car clauses) binds)

(prove-and (cdr clauses) binds))))

(=defun prove-or (clauses binds)
(choose-bind c clauses
(prove-query c binds)))

(=defun prove-not (expr binds)
(let ((save-paths *paths*))
(setq *paths* nil)
(choose (=bind (b) (prove-query expr binds)

(setq *paths* save-paths)
(fail))

(progn
(setq *paths* save-paths)
(=values binds)))))

(=defun prove-simple (query binds)
(choose-bind r *rlist*
(implies r query binds)))

Figure 24.3: Interpretation of queries.

be restarted later. So now the test for (painter ?x) is done with a temporarily
empty list of saved states, and the old list is restored on the way out.

Another difference between this program and the query interpreter is in the
interpretation of simple patterns—expressions such as (painter ?x)which con-
sist just of a predicate and some arguments. When the query interpreter generated
bindings for a simple pattern, it called lookup (page 251). Now, instead of calling
lookup, we have to get any bindings implied by the rules.

24.2 AN INTERPRETER 327

(defvar *rlist* nil)

(defmacro <- (con &rest ant)
(let ((ant (if (= (length ant) 1)

(car ant)
‘(and ,@ant))))

‘(length (conc1f *rlist* (rep_ (cons ’,ant ’,con))))))

(=defun implies (r query binds)
(let ((r2 (change-vars r)))
(aif2 (match query (cdr r2) binds)

(prove-query (car r2) it)
(fail))))

(defun change-vars (r)
(sublis (mapcar #’(lambda (v)

(cons v (symb ’? (gensym))))
(vars-in r #’atom))

r))

Figure 24.4: Code involving rules.

〈rule〉 : (<- 〈sentence〉 〈query〉)
〈query〉 : (not 〈query〉)

: (and 〈query〉*)
: (or 〈query〉*)
: 〈sentence〉

〈sentence〉 : (〈symbol〉 〈argument〉*)
〈argument〉 : 〈variable〉

: 〈symbol〉
: 〈number〉

〈variable〉 : ?〈symbol〉

Figure 24.5: Syntax of rules.

Code for defining and using rules is shown in Figure 24.4. The rules are kept
in a global list, *rlist*. Each rule is represented as a dotted pair of body and
head. At the time a rule is defined, all the underscores are replaced with unique
variables.

328 PROLOG

The definition of <- follows three conventions often used in programs of this
type:

1. New rules are added to the end rather than the front of the list, so that they
will be applied in the order that they were defined.

2. Rules are expressed head first, since that’s the order in which the program
examines them.

3. Multiple expressions in the body are within an implicit and.

The outermost call to length in the expansion of <- is simply to avoid printing a
huge list when <- is called from the toplevel.

The syntax of rules is given in Figure 24.5. The head of a rule must be a pattern
for a fact: a list of a predicate followed by zero or more arguments. The body
may be any query that could be handled by the query interpreter of Chapter 19.
Here is the rule from earlier in this chapter:

(<- (painter ?x) (and (hungry ?x)
(smells-of ?x turpentine)))

or just

(<- (painter ?x) (hungry ?x)
(smells-of ?x turpentine))

As in the query interpreter, arguments like turpentine do not get evaluated, so
they don’t have to be quoted.

When prove-simple is asked to generate bindings for a query, it nondeter-
ministically chooses a rule and sends both rule and query to implies. The latter
function then tries to match the query with the head of the rule. If the match
succeeds, implies will call prove-query to establish bindings for the body.
Thus we recursively search the tree of implications.

The function change-vars replaces all the variables in a rule with fresh ones.
An ?x used in one rule is meant to be independent of one used in another. In order
to avoid conflicts with existing bindings, change-vars is called each time a rule
is used.

For the convenienceof the user, it is possible to use (underscore)as a wildcard
variable in rules. When a rule is defined, the function rep is called to change
each underscore into a real variable. Underscores can also be used in the queries
given to with-inference.

24.3 RULES 329

24.3 Rules

This section shows how to write rules for our Prolog. To start with, here are the
two rules from Section 24.1:

(<- (painter ?x) (hungry ?x)
(smells-of ?x turpentine))

(<- (hungry ?x) (or (gaunt ?x) (eats-ravenously ?x)))

If we also assert the following facts:

(<- (gaunt raoul))
(<- (smells-of raoul turpentine))
(<- (painter rubens))

Then we will get the bindings they generate according to the order in which they
were defined:

> (with-inference (painter ?x)
(print ?x))

RAOUL
RUBENS
@

The with-inferencemacro has exactly the same restrictions on variable binding
as with-answer. (See Section 19.4.)

We can write rules which imply that facts of a given form are true for all
possible bindings. This happens, for example, when some variable occurs in the
head of a rule but not in the body. The rule

(<- (eats ?x ?f) (glutton ?x))

Says that if ?x is a glutton, then ?x eats everything. Because ?f doesn’t occur in
the body, we can prove any fact of the form (eats ?x y) simply by establishing
a binding for ?x. If we make a query with a literal value as the second argument
to eats,

> (<- (glutton hubert))
7
> (with-inference (eats ?x spinach)

(print ?x))
HUBERT
@

then any literal value will work. When we give a variable as the second argument:

330 PROLOG

> (with-inference (eats ?x ?y)
(print (list ?x ?y)))

(HUBERT #:G229)
@

we get a gensym back. Returning a gensym as the binding of a variable in the
query is a way of signifying that any value would be true there. Programs can be
written explicitly to take advantage of this convention:

> (progn
(<- (eats monster bad-children))
(<- (eats warhol candy)))

9
> (with-inference (eats ?x ?y)

(format t "~A eats ~A.~%"
?x
(if (gensym? ?y) ’everything ?y)))

HUBERT eats EVERYTHING.
MONSTER eats BAD-CHILDREN.
WARHOL eats CANDY.
@

Finally, if we want to specify that facts of a certain form will be true for any
arguments, we make the body a conjunction with no arguments. The expression
(and) will always behave as a true fact. In the macro <- (Figure 24.4), the body
defaults to (and), so for such rules we can simply omit the body:

> (<- (identical ?x ?x))
10
> (with-inference (identical a ?x)

(print ?x))
A
@

For readers with some knowledge of Prolog, Figure 24.6 shows the translation
from Prolog syntax into that of our program. The traditional first Prolog program
is append, which would be written as at the end of Figure 24.6. In an instance of
appending, two shorter lists are joined together to form a single larger one. Any
two of these lists define what the third should be. The Lisp function append takes
the two shorter lists as arguments and returns the longer one. Prolog append is
more general; the two rules in Figure 24.6 define a program which, given any two
of the lists involved, can find the third.

24.3 RULES 331

Our syntax differs from traditional Prolog syntax as follows:

1. Variables are represented by symbols beginning with question marks
instead of capital letters. Common Lisp is not case-sensitive by default,
so it would be more trouble than it’s worth to use capitals.

2. [] becomes nil.

3. Expressions of the form [x | y] become (x . y).

4. Expressions of the form [x, y, ...] become (x y ...).

5. Predicates are moved inside parentheses, and no commas separate argu-
ments: pred(x, y, ...) becomes (pred x y ...).

Thus the Prolog definition of append:

append([], Xs, Xs).
append([X | Xs], Ys, [X | Zs]) <- append(Xs, Ys, Zs).

becomes:

(<- (append nil ?xs ?xs))
(<- (append (?x . ?xs) ?ys (?x . ?zs))

(append ?xs ?ys ?zs))

Figure 24.6: Prolog syntax equivalence.

> (with-inference (append ?x (c d) (a b c d))
(format t "Left: ~A~%" ?x))

Left: (A B)
@
> (with-inference (append (a b) ?x (a b c d))

(format t "Right: ~A~%" ?x))
Right: (C D)
@
> (with-inference (append (a b) (c d) ?x)

(format t "Whole: ~A~%" ?x))
Whole: (A B C D)
@

Not only that, but given only the last list, it can find all the possibilities for the
first two:

332 PROLOG

> (with-inference (append ?x ?y (a b c))
(format t "Left: ~A Right: ~A~%" ?x ?y))

Left: NIL Right: (A B C)
Left: (A) Right: (B C)
Left: (A B) Right: (C)
Left: (A B C) Right: NIL
@

The case of append points to a great difference between Prolog and other
languages. A collection of Prolog rules does not have to yield a specific value. It
can instead yield constraints, which, when combined with constraints generated
by other parts of the program, yield a specific value. For example, if we define
member thus:

(<- (member ?x (?x . ?rest)))
(<- (member ?x (_ . ?rest)) (member ?x ?rest))

then we can use it to test for list membership, as we would use the Lisp function
member:

> (with-inference (member a (a b)) (print t))
T
@

but we can also use it to establish a constraint of membership, which, combined
with other constraints, yields a specific list. If we also have a predicate cara

(<- (cara (a _)))

which is true of any two-element list whose car is a, then between that and member
we have enough constraint for Prolog to construct a definite answer:

> (with-inference (and (cara ?lst) (member b ?lst))
(print ?lst))

(A B)
@

This is a rather trivial example, but bigger programs can be constructed on the
same principle. Whenever we want to program by combining partial solutions,
Prolog may be useful. Indeed, a surprising variety of problems can be expressed
in such terms: Figure 24.14, for example, shows a sorting algorithm expressed as
a collection of constraints on the solution.

24.4 THE NEED FOR NONDETERMINISM 333

24.4 The Need for Nondeterminism

Chapter 22 explained the relation between deterministic and nondeterministic
search. A deterministic search program could take a query and generate all the
solutions which satisfied it. A nondeterministic search program will use choose
to generate solutions one at a time, and if more are needed, will call fail to restart
the search.

When we have rules which all yield finite sets of bindings, and we want all of
them at once, there is no reason to prefer nondeterministic search. The difference
between the two strategies becomes apparent when we have queries which would
generate an infinite number of bindings, of which we want a finite subset. For
example, the rules

(<- (all-elements ?x nil))
(<- (all-elements ?x (?x . ?rest))

(all-elements ?x ?rest))

imply all the facts of the form (all-elements x y), where every member of y
is equal to x. Without backtracking we could handle queries like:

(all-elements a (a a a))
(all-elements a (a a b))
(all-elements ?x (a a a))

However, the query (all-elements a ?x) is satisfied for an infinite number of
possible ?x: nil, (a), (a a), and so on. If we try to generate answers for this
query by iteration, the iteration will never terminate. Even if we only wanted one
of the answers, we would never get a result from an implementation which had to
generate all the bindings for the query before it could begin to iterate through the
Lisp expressions following it.

This is why with-inference interleaves the generation of bindings with the
evaluation of its body. Where queries could lead to an infinite number of answers,
the only successful approach will be to generate answers one at a time, and return
to pick up new ones by restarting the suspended search. Because it uses choose
and fail, our program can handle this case:

> (block nil
(with-inference (all-elements a ?x)

(if (= (length ?x) 3)
(return ?x)
(princ ?x))))

NIL(A)(A A)
(A A A)

334 PROLOG

Like any other Prolog implementation, ours simulates nondeterminism by
doing depth-first search with backtracking. In theory, “logic programs” run under
true nondeterminism. In fact, Prolog implementations always use depth-first
search. Far from being inconvenienced by this choice, typical Prolog programs
depend on it. In a truly nondeterministic world, the query

(and (all-elements a ?x) (length ?x 3))

has an answer, but it takes you arbitrarily long to find out what it is.
Not only does Prolog use the depth-first implementation of nondeterminism,

it uses a version equivalent to that defined on page 293. As explained there, this
implementation is not always guaranteed to terminate. So Prolog programmers
must take deliberate steps to avoid loops in the search space. For example, if we
had defined member in the reverse order

(<- (member ?x (_ . ?rest)) (member ?x ?rest))
(<- (member ?x (?x . ?rest)))

then logically it would have the same meaning, but as a Prolog program it would
have a different effect. The original definition of member would yield an infinite
stream of answers in response to the query (member ’a ?x), but the reversed
definition will yield an infinite recursion, and no answers.

24.5 New Implementation

In this section we will see another instance of a familiar pattern. In Section 18.4,
we found after writing the initial version that if-match could be made much
faster. By taking advantage of information known at compile-time, we were
able to write a new version which did less work at runtime. We saw the same
phenomenon on a larger scale in Chapter 19. Our query interpreter was replaced
by an equivalent but faster version. The same thing is about to happen to our
Prolog interpreter.

Figures 24.7, 24.8, and 24.10 define Prolog in a different way. The macro
with-inference used to be just the interface to a Prolog interpreter. Now it is
most of the program. The new program has the same general shape as the old one,
but of the functions defined in Figure 24.8, only prove is called at runtime. The
others are called by with-inference in order to generate its expansion.

Figure 24.7 shows the new definition of with-inference. As in if-match
or with-answer, pattern variables are initially bound to gensyms to indicate
that they haven’t yet been assigned real values by matching. Thus the function
varsym?, which match and fullbind use to detect variables, has to be changed
to look for gensyms.

24.5 NEW IMPLEMENTATION 335

(defmacro with-inference (query &rest body)
(let ((vars (vars-in query #’simple?)) (gb (gensym)))
‘(with-gensyms ,vars

(setq *paths* nil)
(=bind (,gb) ,(gen-query (rep_ query))
(let ,(mapcar #’(lambda (v)

‘(,v (fullbind ,v ,gb)))
vars)

,@body)
(fail)))))

(defun varsym? (x)
(and (symbolp x) (not (symbol-package x))))

Figure 24.7: New toplevel macro.

To generate the code to establish bindings for the query, with-inference
calls gen-query (Figure 24.8). The first thing gen-query does is look to see
whether its first argument is a complex query beginning with an operator like and
or or. This process continues recursively until it reaches simple queries, which
are expanded into calls to prove. In the original implementation, such logical
structure was analyzed at runtime. A complex expression occurring in the body
of a rule had to be analyzed anew each time the rule was used. This is wasteful
because the logical structure of rules and queries is known beforehand. The new
implementation decomposes complex expressions at compile-time.

As in the previous implementation, a with-inference expression expands
into code which iterates through the Lisp code following the query with the pattern
variables bound to successive values established by the rules. The expansion of
with-inference concludes with a fail, which will restart any saved states.

The remaining functions in Figure 24.8 generate expansions for complex
queries—queries joined together by operators like and, or, and not. If we have
a query like

(and (big ?x) (red ?x))

then we want the Lisp code to be evaluated only with those ?x for which both
conjuncts can be proved. So to generate the expansion of an and, we nest
the expansion of the second conjunct within that of the first. When (big ?x)
succeeds we try (red ?x), and if that succeeds, we evaluate the Lisp expressions.
So the whole expression expands as in Figure 24.9.

336 PROLOG

(defun gen-query (expr &optional binds)
(case (car expr)
(and (gen-and (cdr expr) binds))
(or (gen-or (cdr expr) binds))
(not (gen-not (cadr expr) binds))
(t ‘(prove (list ’,(car expr)

,@(mapcar #’form (cdr expr)))
,binds))))

(defun gen-and (clauses binds)
(if (null clauses)

‘(=values ,binds)
(let ((gb (gensym)))

‘(=bind (,gb) ,(gen-query (car clauses) binds)
,(gen-and (cdr clauses) gb)))))

(defun gen-or (clauses binds)
‘(choose

,@(mapcar #’(lambda (c) (gen-query c binds))
clauses)))

(defun gen-not (expr binds)
(let ((gpaths (gensym)))
‘(let ((,gpaths *paths*))

(setq *paths* nil)
(choose (=bind (b) ,(gen-query expr binds)

(setq *paths* ,gpaths)
(fail))

(progn
(setq *paths* ,gpaths)
(=values ,binds))))))

(=defun prove (query binds)
(choose-bind r *rules* (=funcall r query binds)))

(defun form (pat)
(if (simple? pat)

pat
‘(cons ,(form (car pat)) ,(form (cdr pat)))))

Figure 24.8: Compilation of queries.

24.6 ADDING PROLOG FEATURES 337

(with-inference (and (big ?x) (red ?x))
(print ?x))

expands into:

(with-gensyms (?x)
(setq *paths* nil)
(=bind (#:g1) (=bind (#:g2) (prove (list ’big ?x) nil)

(=bind (#:g3) (prove (list ’red ?x) #:g2)
(=values #:g3)))

(let ((?x (fullbind ?x #:g1)))
(print ?x))

(fail)))

Figure 24.9: Expansion of a conjunction.

An and means nesting; an or means a choose. Given a query like

(or (big ?x) (red ?x))

we want the Lisp expressions to be evaluated for values of ?x established by either
subquery. The function gen-or expands into a choose over the gen-query of
each of the arguments. As for not, gen-not is almost identical to prove-not
(Figure 24.3).

Figure 24.10 shows the code for defining rules. Rules are translated directly
into Lisp code generated by rule-fn. Since <- now expands rules into Lisp code,
compiling a file full of rule definitions will cause rules to be compiled functions.

When a rule-function is sent a pattern, it tries to match it with the head of
the rule it represents. If the match succeeds, the rule-function will then try to
establish bindings for the body. This task is essentially the same as that done by
with-inference, and in fact rule-fn ends by calling gen-query. The rule-
function eventually returns the bindings established for the variables occurring in
the head of the rule.

24.6 Adding Prolog Features

The code already presented can run most “pure” Prolog programs. The final step
is to add extras like cuts, arithmetic, and I/O.

Putting a cut in a Prolog rule causes the search tree to be pruned. Ordinarily,
when our program encounters a fail, it backtracks to the last choice point. The

338 PROLOG

(defvar *rules* nil)

(defmacro <- (con &rest ant)
(let ((ant (if (= (length ant) 1)

(car ant)
‘(and ,@ant))))

‘(length (conc1f *rules*
,(rule-fn (rep_ ant) (rep_ con))))))

(defun rule-fn (ant con)
(with-gensyms (val win fact binds)
‘(=lambda (,fact ,binds)

(with-gensyms ,(vars-in (list ant con) #’simple?)
(multiple-value-bind

(,val ,win)
(match ,fact

(list ’,(car con)
,@(mapcar #’form (cdr con)))

,binds)
(if ,win

,(gen-query ant val)
(fail)))))))

Figure 24.10: Code for defining rules.

implementation of choose in Section 22.4 stores choice points in the global variable
paths. Calling fail restarts the search at the most recent choice point, which
is the car of *paths*. Cuts introduce a new complication. When the program
encounters a cut, it will throw away some of the most recent choice points stored
on *paths*—specifically, all those stored since the last call to prove.

The effect is to make rules mutually exclusive. We can use cuts to get the
effect of a case statement in Prolog programs. For example, if we define minimum
this way:

(<- (minimum ?x ?y ?x) (lisp (<= ?x ?y)))
(<- (minimum ?x ?y ?y) (lisp (> ?x ?y)))

it will work correctly, but inefficiently. Given the query

(minimum 1 2 ?x)

24.6 ADDING PROLOG FEATURES 339

Prolog will immediately establish that ?x = 1 from the first rule. A human would
stop here, but the program will waste time looking for more answers from the
second rule, because it has been given no indication that the two rules are mutually
exclusive. On the average, this version of minimum will do 50% more work than
it needs to. We can fix the problem by adding a cut after the first test:

(<- (minimum ?x ?y ?x) (lisp (<= ?x ?y)) (cut))
(<- (minimum ?x ?y ?y))

Now when Prolog has finished with the first rule, it will fail all the way out of the
query instead of moving on to the next rule.

It is trivially easy to modify our program to handle cuts. On each call to
prove, the current state of *paths* is passed as a parameter. If the program
encounters a cut, it just sets *paths* back to the old value passed in the parameter.
Figures 24.11 and 24.12 show the code which has to be modified to handle cuts.
(Changed lines are marked with semicolons. Not all the changes are due to cuts.)

Cuts which merely make a program more efficient are called green cuts. The
cut in minimum was a green cut. Cuts which make a program behave differently
are called red cuts. For example, if we define the predicate artist as follows:

(<- (artist ?x) (sculptor ?x) (cut))
(<- (artist ?x) (painter ?x))

the result is that, if there are any sculptors, then the query can end there. If there
are no sculptors then painters get to be considered as artists:

> (progn (<- (painter ’klee))
(<- (painter ’soutine)))

4
> (with-inference (artist ?x)

(print ?x))
KLEE
SOUTINE
@

But if there are sculptors, the cut stops inference with the first rule:

> (<- (sculptor ’hepworth))
5
> (with-inference (artist ?x)

(print ?x))
HEPWORTH
@

340 PROLOG

(defun rule-fn (ant con)
(with-gensyms (val win fact binds paths) ;
‘(=lambda (,fact ,binds ,paths) ;

(with-gensyms ,(vars-in (list ant con) #’simple?)
(multiple-value-bind

(,val ,win)
(match ,fact

(list ’,(car con)
,@(mapcar #’form (cdr con)))

,binds)
(if ,win

,(gen-query ant val paths) ;
(fail)))))))

(defmacro with-inference (query &rest body)
(let ((vars (vars-in query #’simple?)) (gb (gensym)))
‘(with-gensyms ,vars

(setq *paths* nil)
(=bind (,gb) ,(gen-query (rep_ query) nil ’*paths*) ;
(let ,(mapcar #’(lambda (v)

‘(,v (fullbind ,v ,gb)))
vars)

,@body)
(fail)))))

(defun gen-query (expr binds paths) ;
(case (car expr)
(and (gen-and (cdr expr) binds paths)) ;
(or (gen-or (cdr expr) binds paths)) ;
(not (gen-not (cadr expr) binds paths)) ;
(lisp (gen-lisp (cadr expr) binds)) ;
(is (gen-is (cadr expr) (third expr) binds)) ;
(cut ‘(progn (setq *paths* ,paths) ;

(=values ,binds))) ;
(t ‘(prove (list ’,(car expr)

,@(mapcar #’form (cdr expr)))
,binds *paths*)))) ;

(=defun prove (query binds paths) ;
(choose-bind r *rules*
(=funcall r query binds paths))) ;

Figure 24.11: Adding support for new operators.

24.6 ADDING PROLOG FEATURES 341

(defun gen-and (clauses binds paths) ;
(if (null clauses)

‘(=values ,binds)
(let ((gb (gensym)))
‘(=bind (,gb) ,(gen-query (car clauses) binds paths);

,(gen-and (cdr clauses) gb paths))))) ;

(defun gen-or (clauses binds paths) ;
‘(choose

,@(mapcar #’(lambda (c) (gen-query c binds paths)) ;
clauses)))

(defun gen-not (expr binds paths) ;
(let ((gpaths (gensym)))
‘(let ((,gpaths *paths*))

(setq *paths* nil)
(choose (=bind (b) ,(gen-query expr binds paths) ;

(setq *paths* ,gpaths)
(fail))

(progn
(setq *paths* ,gpaths)
(=values ,binds))))))

(defmacro with-binds (binds expr)
‘(let ,(mapcar #’(lambda (v) ‘(,v (fullbind ,v ,binds)))

(vars-in expr))
,expr))

(defun gen-lisp (expr binds)
‘(if (with-binds ,binds ,expr)

(=values ,binds)
(fail)))

(defun gen-is (expr1 expr2 binds)
‘(aif2 (match ,expr1 (with-binds ,binds ,expr2) ,binds)

(=values it)
(fail)))

Figure 24.12: Adding support for new operators.

342 PROLOG

〈rule〉 : (<- 〈sentence〉 〈query〉)
〈query〉 : (not 〈query〉)

: (and 〈query〉*)
: (lisp 〈lisp expression〉)
: (is 〈variable〉 〈lisp expression〉)
: (cut)
: (fail)
: 〈sentence〉

〈sentence〉 : (〈symbol〉 〈argument〉*)
〈argument〉 : 〈variable〉

: 〈lisp expression〉
〈variable〉 : ?〈symbol〉

Figure 24.13: New syntax of rules.

The cut is sometimes used in conjunction with the Prolog fail operator. Our
function fail does exactly the same thing. Putting a cut in a rule makes it like a
one-way street: once you enter, you’re committed to using only that rule. Putting
a cut-fail combination in a rule makes it like a one-way street in a dangerous
neighborhood: once you enter, you’re committed to leaving with nothing. A
typical example is in the implementation of not-equal:

(<- (not-equal ?x ?x) (cut) (fail))
(<- (not-equal ?x ?y))

The first rule here is a trap for impostors. If we’re trying to prove a fact of the
form (not-equal 1 1), it will match with the head of the first rule and thus be
doomed. The query (not-equal 1 2), on the other hand, will not match the
head of the first rule, and will go on to the second, where it succeeds:

> (with-inference (not-equal ’a ’a)
(print t))

@
> (with-inference (not-equal ’(a a) ’(a b))

(print t))
T
@

The code shown in Figures 24.11 and 24.12 also gives our program arithmetic,
I/O, and the Prolog is operator. Figure 24.13 shows the complete syntax of rules
and queries.

24.6 ADDING PROLOG FEATURES 343

We add arithmetic (and more) by including a trapdoor to Lisp. Now in addition
to operators like and and or, we have the lisp operator. This may be followed
by any Lisp expression, which will be evaluated with the variables within it bound
to the bindings established for them by the query. If the expression evaluates to
nil, then the lisp expression as a whole is equivalent to a (fail); otherwise it
is equivalent to (and).

As an example of the use of the lisp operator, consider the Prolog definition
of ordered, which is true of lists whose elements are arranged in ascending order:

(<- (ordered (?x)))
(<- (ordered (?x ?y . ?ys))

(lisp (<= ?x ?y))
(ordered (?y . ?ys)))

In English, a list of one element is ordered, and a list of two or more elements is
ordered if the first element of the list is less than or equal to the second, and the
list from the second element on is ordered.

> (with-inference (ordered ’(1 2 3))
(print t))

T
@
> (with-inference (ordered ’(1 3 2))

(print t))
@

By means of the lisp operator we can provide other features offered by
typical Prolog implementations. Prolog I/O predicates can be duplicated by putting
Lisp I/O calls within lisp expressions. The Prolog assert, which as a side-
effect defines new rules, can be duplicated by calling the <- macro within lisp
expressions.

The is operator offers a form of assignment. It takes two arguments, a pattern
and a Lisp expression, and tries to match the pattern with the result returned by the
expression. If the match fails, then the program calls fail; otherwise it proceeds
with the new bindings. Thus, the expression (is ?x 1) has the effect of setting
?x to 1, or more precisely, insisting that ?x be 1. We need is to calculate—for
example, to calculate factorials:

(<- (factorial 0 1))
(<- (factorial ?n ?f)

(lisp (> ?n 0))
(is ?n1 (- ?n 1))
(factorial ?n1 ?f1)
(is ?f (* ?n ?f1)))

344 PROLOG

We use this definition by making a query with a number n as the first argument
and a variable as the second:

> (with-inference (factorial 8 ?x)
(print ?x))

40320
@

Note that the variables used in a lisp expression, or in the second argument to
is, must have established bindings for the expression to return a value. This
restriction holds in any Prolog. For example, the query:

(with-inference (factorial ?x 120) ; wrong
(print ?x))

won’t work with this definition of factorial, because ?n will be unknown when
the lisp expression is evaluated. So not all Prolog programs are like append:
many insist, like factorial, that certain of their arguments be real values.

24.7 Examples

This final section shows how to write some example Prolog programs in our◦
implementation. The rules in Figure 24.14 define quicksort. These rules imply
facts of the form (quicksort x y), where x is a list and y is a list of the same
elements sorted in ascending order. Variables may appear in the second argument
position:

> (with-inference (quicksort ’(3 2 1) ?x)
(print ?x))

(1 2 3)
@

An I/O loop is a test for our Prolog, because it makes use of the cut, lisp, and
is operators. The code is shown in Figure 24.15. These rules should be invoked
by trying to prove (echo), with no arguments. That query will match the first
rule, which will bind ?x to the result returned by read, and then try to establish
(echo ?x). The new query can match either of the second two rules. If ?x =
done, then the query will terminate in the second rule. Otherwise the query will
only match the third rule, which prints the value read, and starts the process over
again.

24.7 EXAMPLES 345

(setq *rules* nil)

(<- (append nil ?ys ?ys))
(<- (append (?x . ?xs) ?ys (?x . ?zs))

(append ?xs ?ys ?zs))

(<- (quicksort (?x . ?xs) ?ys)
(partition ?xs ?x ?littles ?bigs)
(quicksort ?littles ?ls)
(quicksort ?bigs ?bs)
(append ?ls (?x . ?bs) ?ys))

(<- (quicksort nil nil))

(<- (partition (?x . ?xs) ?y (?x . ?ls) ?bs)
(lisp (<= ?x ?y))
(partition ?xs ?y ?ls ?bs))

(<- (partition (?x . ?xs) ?y ?ls (?x . ?bs))
(lisp (> ?x ?y))
(partition ?xs ?y ?ls ?bs))

(<- (partition nil ?y nil nil))

Figure 24.14: Quicksort.

(<- (echo)
(is ?x (read))
(echo ?x))

(<- (echo ’done)
(cut))

(<- (echo ?x)
(lisp (prog1 t (format t "~A~%" ?x)))
(is ?y (read))
(cut)
(echo ?y))

Figure 24.15: An I/O loop in Prolog.

346 PROLOG

Collectively, the rules define a program that will continue to echo what you
type, until you type done:

> (with-inference (echo))
hi
HI
ho
HO
done
@

Programs like this are difficult to read because they subvert the abstract model of
Prolog. It might be easier to understandecho if we look at a literal Lisp translation

(defun echo (&rest args)
(cond ((null args) (echo (read)))

((eq (car args) ’done) nil)
(t (format t "~A~%" (car args))

(echo (read)))))

which in idiomatic Common Lisp would be:

(defun echo (&optional (arg (read)))
(unless (eq arg ’done)
(format t "~A~%" arg)
(echo)))

24.8 The Senses of Compile

The word “compile” has several senses. In the most general sense, to compile is
to transform some abstract description of a program into lower-level code. The
program described in this chapter is certainly a compiler in this sense, because it
translates rules into Lisp functions.

In a more specific sense, to compile is to transform a program into machine
language. Good Common Lisps compile functions into native machine code. As
mentioned on page 25, if code which generates closures is compiled, it will yield
compiled closures. Thus the program described here is a compiler in the stricter
sense as well. In a good Lisp, our Prolog programs will get translated into machine
language.

However, the program described here is still not a Prolog compiler. For
programming languages there is a still more specific sense of “compile,” and
merely generating machine code is not enough to satisfy this definition. A compiler
for a programming language must optimize as well as translate. For example, if a
Lisp compiler is asked to compile an expression like

24.8 THE SENSES OF COMPILE 347

(+ x (+ 2 5))

it should be smart enough to realize that there is no reason to wait until runtime
to evaluate (+ 2 5). The program can be optimized by replacing it with 7, and
instead compiling

(+ x 7)

In our program, all the compiling is done by the Lisp compiler, and it is
looking for Lisp optimizations, not Prolog optimizations. Its optimizations will
be valid ones, but too low-level. The Lisp compiler doesn’t know that the code
it’s compiling is meant to represent rules. While a real Prolog compiler would be
looking for rules that could be transformed into loops, our program is looking for
expressions that yield constants, or closures that could be allocated on the stack.

Embedded languages allow you to make the most of available abstractions,
but they are not magic. If you want to travel all the way from a very abstract
representation to fast machine code, someone still has to tell the computer how to
do it. In this chapter we travelled a good part of that distance with surprisingly
little code, but that is not the same as writing a true Prolog compiler.

