24

Prolog

This chapter describes how to write Prolog as an embedded language. Chapter 19
showed how to write a program which answered complex queries on databases.
Here we add one new ingredient: rules, which makeit possibleto infer facts from
those already known. A set of rules defines atree of implications. In order to use
rules which would otherwise imply an unlimited number of facts, we will search
thisimplication tree nondeterministically.

Prolog makes an excellent example of an embedded language. It combines
three ingredients: pattern-matching, nondeterminism, and rules. Chapters 18
and 22 give us the first two independently. By building Prolog on top of the
pattern-matching and nondeterministic choice operators we have already, we will
have an example of areal, multi-layer bottom-up system. Figure 24.1 shows the
layers of abstraction involved.

The secondary aim of this chapter is to study Prolog itself. For experienced
programmers, the most convenient explanation of Prolog may be a sketch of its
implementation. Writing Prolog in Lisp is particularly interesting, because it
brings out the similarities between the two languages.

24.1 Concepts

Chapter 19 showed how to write a database system which would accept complex
queries containing variables, and generate all the bindings which made the query
truein the database. Inthefollowing example, (after calling c1ear-db) we assert
two facts and then query the database:

321

322 PROLOG

Figure 24.1: Layers of abstraction.

> (fact painter reynolds)

(REYNOLDS)

> (fact painter gainsborough)

(GAINSBOROUGH)

> (with-answer (painter 7x)
(print 7x))

GAINSBOROUGH

REYNOLDS

NIL

Conceptually, Prolog is the database program with the addition of rules, which
make it possible to satisfy a query not just by looking it up in the database, but by
inferring it from other known facts. For example, if we have arulelike:

If (hungry 7x) and (smells-of ?x turpentine)
Then (painter 7x)

thenthequery (painter ?7x) will besatisfied for 7x = raoul when the database
contains both (hungry raoul) and (smells-of raoul turpentine), even
if it doesn’t contain (painter raoul).

In Prolog, theif-part of aruleis called the body, and the then-part the head.
(Inlogic, the names are antecedent and consequent, but it is just as well to have
separate names, to emphasize that Prolog inference is not the same as logical
implication.) When trying to establish bindings? for a query, the program looks
first at the head of arule. If the head matchesthe query that the programistrying
to answer, the program will then try to establish bindingsfor the body of therule.
Bindings which satisfy the body will, by definition, satisfy the head.

Thefacts used in the body of the rule may in turn be inferred from other rules:

IMany of the concepts used in this chapter, including this sense of bindings, are explained in
Section 18.4.

24.2 AN INTERPRETER 323

If (gaunt ?7x) or (eats-ravenously ?7x)
Then (hungry 7x)

and rules may berecursive, asin:

If (surname ?f ?7n) and (father ?f ?c)
Then (surname ?c ?n)

Prolog will be able to establish bindings for a query if it can find some path
through the rules which leads eventually to known facts. So it is essentially a
search engine: it traverses the tree of logical implications formed by the rules,
looking for a successful path.

Though rules and facts sound like distinct types of objects, they are conceptu-
aly interchangeable. Rules can be seen as virtual facts. |If we want our database
to reflect the discovery that big, fierce animals are rare, we could look for all the
x such that there are facts (species X), (big X), and (fierce X), and add a
new fact (rare x). However, by defining aruleto say

If (species 7x) and (big 7x) and (fierce 7x)
Then (rare 7x)

we get the same effect, without actually having to add all the (rare x) to the
database. We can even define ruleswhich imply an infinite number of facts. Thus
rules make the database smaller at the expense of extraprocessing when it comes
time to answer questions.

Facts, meanwhile, are a degenerate case of rules. The effect of any fact F
could be duplicated by arule whose body was always true:

If true
Then F

To simplify our implementation, we will take advantage of this principle and
represent facts as bodylessrules.

24.2 AnlInterpreter

Section 18.4 showed two ways to define if-match. The first was simple but
inefficient. Its successor was faster because it did much of its work at compile-
time. We will follow a similar strategy here. In order to introduce some of the
topics involved, we will begin with asimple interpreter. Later we will show how
to write the same program much more efficiently.

324 PROLOG

(defmacro with-inference (query &body body)
‘ (progn
(setq *paths* nil)
(=bind (binds) (prove-query ’,(rep_ query) nil)
(let , (mapcar #’(lambda (v)
‘(,v (fullbind ’,v binds)))
(vars-in query #’atom))
,@body
(fail)))))

(defun rep_ (x)
(if (atom x)
(if (eq x ’_) (gensym "7") x)
(cons (rep_ (car x)) (rep_ (cdr x)))))

(defun fullbind (x b)
(cond ((varsym? x) (aif2 (binding x b)
(fullbind it b)
(gensym)))
((atom x) x)
(t (cons (fullbind (car x) b)
(fullbind (cdr x) b)))))

(defun varsym? (x)
(and (symbolp x) (eq (char (symbol-name x) 0) #\7)))

Figure 24.2: Toplevel macro.

Figures 24.2-24.4 contain the code for a simple Prolog interpreter. It ac-
cepts the same queries as the query interpreter of Section 19.3, but uses rules
instead of the database to generate bindings. The query interpreter was invoked
through a macro called with-answer. The interface to the Prolog interpreter
will be through a similar macro, called with-inference. Like with-answer,
with-inferenceisgivenaquery and a series of Lisp expressions. Variablesin
the query are symbols beginning with a question mark:

(with-inference (painter ?7x)
(print 7x))

A call towith-inference expandsinto code that will evaluate the Lisp expres-
sionsfor each set of bindings generated by the query. The call above, for example,

24.2 AN INTERPRETER 325

will print each x for which it is possibleto infer (painter x).

Figure 24.2 showsthe definition of with-inference, together with the func-
tion it calls to retrieve bindings. One notable difference between with-answer
and with-inference isthat the former simply collected all the valid bindings.
The new program searches nondeterministically. We see this in the definition of
with-inference: instead of expanding into aloop, it expands into code which
will return one set of bindings, followed by a fail to restart the search. This
gives usiteration implicitly, asin:

> (choose-bind x (01 234567 89)
(princ x)
(if (= x 6) x (fail)))

0123456

6

The function fullbind points to another difference between with-answer
andwith-inference. Tracingback throughaseriesof rulescanbuild up binding
lists in which the binding of avariableisalist of other variables. To make use of
the results of a query we now need a recursive function for retrieving bindings.
Thisisthe purpose of fullbind:

> (setq b ’((?x . (?7y . ?72)) (?y . foo) (?z . nil)))
((?X 7Y . ?2) (7Y . FOO) (7Z))

> (values (binding ’7x b))

(7Y . ?Z)

> (fullbind ’?x b)

(F00)

Bindingsfor thequery aregenerated by acall toprove-query intheexpansion
of with-inference. Figure 24.3 shows the definition of this function and the
functions it calls. This code is structurally isomorphic to the query interpreter
described in Section 19.3. Both programs use the same functions for matching,
but where the query interpreter used mapping or iteration, the Prolog interpreter
uses equivalent chooses.

Using nondeterministic search instead of iteration doesmaketheinterpretation
of negated queries a bit more complex. Given aquery like

(not (painter 7x))

the query interpreter could just try to establish bindings for (painter ?7x),
returning nil if any were found. With nondeterministic search we have to be
more careful: we don’'t want the interpretation of (painter 7x) to fail back
outside the scope of the not, nor do we want it to leave saved paths that might

326 PROLOG

(=defun prove-query (expr binds)
(case (car expr)
(and (prove-and (cdr expr) binds))
(or (prove-or (cdr expr) binds))
(not (prove-not (cadr expr) binds))
(t (prove-simple expr binds))))

(=defun prove-and (clauses binds)
(if (null clauses)
(=values binds)
(=bind (binds) (prove-query (car clauses) binds)
(prove-and (cdr clauses) binds))))

(=defun prove-or (clauses binds)
(choose-bind c clauses
(prove-query c binds)))

(=defun prove-not (expr binds)
(let ((save-paths #*pathsx*))
(setq *paths* nil)
(choose (=bind (b) (prove-query expr binds)
(setq *paths* save-paths)
(fail))
(progn
(setq *paths* save-paths)
(=values binds)))))

(=defun prove-simple (query binds)
(choose-bind r *rlist*

(implies r query binds)))

Figure 24.3: Interpretation of queries.

be restarted later. So now the test for (painter 7x) isdonewith atemporarily
empty list of saved states, and the old list is restored on the way out.

Another difference between this program and the query interpreter is in the
interpretation of simple patterns—expressionssuch as (painter ?x) whichcon-
sist just of apredicate and some arguments. When the query interpreter generated
bindingsfor asimple pattern, it called 1lookup (page 251). Now, instead of calling
lookup, we haveto get any bindingsimplied by the rules.

24.2 AN INTERPRETER 327

(defvar *rlist* nil)

(defmacro <- (con &rest ant)
(let ((ant (if (= (length ant) 1)
(car ant)
‘(and ,@ant))))
‘(length (conclf *rlist* (rep_ (coms ’,ant ’,con))))))

(=defun implies (r query binds)
(let ((r2 (change-vars r)))
(aif2 (match query (cdr r2) binds)
(prove-query (car r2) it)

(fail))))

(defun change-vars (r)
(sublis (mapcar #’(lambda (v)
(cons v (symb ’7 (gensym))))
(vars-in r #’atom))

r))

Figure 24.4: Code involving rules.

{rule) . (<- (sentence) (query))
(query) . (not (query))

: (and (query)*)

: (or (query)*)

: (sentence)
(sentence) : ((symbol) (argument)*)
(argument) : (variable)

: (symbol)

: (number)
(varigble) : ?(symbol)

Figure 24.5: Syntax of rules.

Code for defining and using rulesis shown in Figure 24.4. Therules are kept
inaglobal list, *r1ist*. Each ruleis represented as a dotted pair of body and
head. At thetime aruleis defined, all the underscores are replaced with unique
variables.

328 PROLOG

The definition of <- follows three conventions often used in programs of this
type:

1. New rules are added to the end rather than the front of the list, so that they
will be applied in the order that they were defined.

2. Rules are expressed head first, since that's the order in which the program
examines them.

3. Multiple expressionsin the body are within an implicit and.

The outermost call to 1ength in the expansion of <- issimply to avoid printing a
huge list when <~ is called from the toplevel.

Thesyntax of rulesisgivenin Figure24.5. Thehead of arulemust beapattern
for afact: alist of a predicate followed by zero or more arguments. The body
may be any query that could be handled by the query interpreter of Chapter 19.
Hereisthe rule from earlier in this chapter:

(<- (painter 7x) (and (hungry 7x)
(smells-of 7x turpentine)))

or just

(<- (painter 7x) (hungry ?7x)
(smells-of 7x turpentine))

Asin the query interpreter, argumentslike turpentine do not get evaluated, so
they don’t have to be quoted.

When prove-simple is asked to generate bindings for a query, it nondeter-
ministically chooses a rule and sends both rule and query to implies. Thelatter
function then tries to match the query with the head of the rule. If the match
succeeds, implies will cal prove-query to establish bindings for the body.
Thus we recursively search the tree of implications.

Thefunction change-vars replacesall thevariablesin arulewith fresh ones.
An 7x usedin oneruleis meant to be independent of one used in another. In order
to avoid conflicts with existing bindings, change-vars iscaled eachtime arule
isused.

For theconvenienceof theuser, it ispossibleto use _(underscore) asawildcard
variable in rules. When arule is defined, the function rep _is caled to change
each underscore into areal variable. Underscores can aso be used in the queries
giventowith-inference.

24.3 RULES 329

24.3 Rules

This section shows how to write rules for our Prolog. To start with, here are the
two rules from Section 24.1:

(<- (painter ?x) (hungry ?7x)
(smells-of 7x turpentine))

(<- (hungry ?x) (or (gaunt 7x) (eats-ravenously 7x)))

If we also assert the following facts:

(<~ (gaunt raoul))
(<~ (smells-of raoul turpentine))
(<~ (painter rubens))

Then we will get the bindings they generate according to the order in which they
were defined:

> (with-inference (painter 7x)
(print 7x))

RAOUL

RUBENS

Q

Thewith-inference macro hasexactly the samerestrictionsonvariablebinding
aswith-answer. (See Section 19.4.)

We can write rules which imply that facts of a given form are true for al
possible bindings. This happens, for example, when some variable occursin the
head of arule but not in the body. The rule

(<- (eats 7x 7f) (glutton 7x))

Saysthat if 7x isaglutton, then 7x eats everything. Because 7£ doesn’'t occur in
the body, we can prove any fact of theform (eats 7x y) simply by establishing
abinding for 7x. If we make a query with aliteral value as the second argument
to eats,

> (<- (glutton hubert))

7

> (with-inference (eats 7x spinach)
(print ?x))

HUBERT

@

then any literal value will work. When we give avariable asthe second argument:

330 PROLOG

> (with-inference (eats 7x 7y)
(print (list ?x ?y)))

(HUBERT #:G229)

Q

we get a gensym back. Returning a gensym as the binding of a variable in the
query isaway of signifying that any value would be true there. Programs can be
written explicitly to take advantage of this convention:

> (progn
(<- (eats monster bad-children))
(<- (eats warhol candy)))
9
> (with-inference (eats 7x 7y)
(format t ""A eats “A.7%"
X
(if (gensym? 7y) ’everything 7y)))
HUBERT eats EVERYTHING.
MONSTER eats BAD-CHILDREN.
WARHOL eats CANDY.
Q

Finally, if we want to specify that facts of a certain form will be true for any
arguments, we make the body a conjunction with no arguments. The expression
(and) will always behave as atrue fact. In the macro <- (Figure 24.4), the body
defaultsto (and), so for such rules we can simply omit the body:

> (<- (identical 7x ?x))

10

> (with-inference (identical a 7x)
(print 7x))

A

Q

For readerswith some knowledge of Prolog, Figure 24.6 showsthetrandation
from Prolog syntax into that of our program. The traditional first Prolog program
is append, which would be written as at the end of Figure 24.6. In an instance of
appending, two shorter lists are joined together to form a single larger one. Any
two of these lists define what the third should be. The Lisp function append takes
the two shorter lists as arguments and returns the longer one. Prolog append is
more general; the two rulesin Figure 24.6 define a program which, given any two
of thelistsinvolved, can find the third.

24.3 RULES 331

Our syntax differs from traditional Prolog syntax as follows:

1. Variables are represented by symbols beginning with question marks
instead of capital letters. Common Lisp is not case-sensitive by defaullt,
so it would be more trouble than it's worth to use capitals.

[] becomesnil.
Expressions of theform [x | y] become (x . V).

Expressionsof theform [x, y, ...] become(xy ...).

g > w D

Predicates are moved inside parentheses, and no commas separate argu-
ments. pred(x, y, ...) becomes (predxy ...).

Thus the Prolog definition of append:

append([1, Xs, Xs).
append([X | Xs], Ys, [X | Zs]) <- append(Xs, Ys, Zs).

becomes:

(<~ (append nil ?7xs 7xs))
(<- (append (7x . ?xs) 7ys (?x . 7zs))
(append 7xs ?ys 7zs))

Figure 24.6: Prolog syntax equivalence.

> (with-inference (append 7x (c d) (a b ¢ d))
(format t "Left: “AY" 7x))

Left: (A B)

Q

> (with-inference (append (a b) ?x (a b ¢ d))
(format t "Right: "A"%" 7x))

Right: (C D)

Q

> (with-inference (append (a b) (c d) ?x)
(format t "Whole: "A~Y%" 7x))

Whole: (A B C D)

Q

Not only that, but given only the last list, it can find al the possibilities for the
first two:

332 PROLOG

> (with-inference (append 7x 7y (a b c¢))
(format t "Left: “A Right: "A~%" ?x 7y))

Left: NIL Right: (A B C)

Left: (A) Right: (B C)

Left: (A B) Right: (C)

Left: (A B C) Right: NIL

Q

The case of append points to a great difference between Prolog and other
languages. A collection of Prolog rules does not have to yield a specific value. It
can instead yield constraints, which, when combined with constraints generated
by other parts of the program, yield a specific value. For example, if we define
member thus:

(<- (member ?x (7x . ?rest)))
(<= (member ?x (_ . 7rest)) (member ?x 7rest))

then we can use it to test for list membership, as we would use the Lisp function
member:

> (with-inference (member a (a b)) (print t))
T
Q

but we can also use it to establish a constraint of membership, which, combined
with other constraints, yields a specific list. If we also have apredicate cara

(<= (cara (a _.)))

whichistrueof any two-element list whosecar is a, then between that and member
we have enough constraint for Prolog to construct a definite answer:

> (with-inference (and (cara 71st) (member b 71st))
(print ?1st))

(A B)

Q

Thisisarather trivial example, but bigger programs can be constructed on the
same principle. Whenever we want to program by combining partial solutions,
Prolog may be useful. Indeed, a surprising variety of problems can be expressed
in such terms. Figure 24.14, for example, shows a sorting algorithm expressed as
a collection of constraints on the solution.

24.4 THE NEED FOR NONDETERMINISM 333

24.4 The Need for Nondeter minism

Chapter 22 explained the relation between deterministic and nondeterministic
search. A deterministic search program could take a query and generate al the
solutions which satisfied it. A nondeterministic search program will use choose
to generate solutions one at atime, and if more are needed, will call fail to restart
the search.

When we have ruleswhich all yield finite sets of bindings, and we want all of
them at once, thereis no reason to prefer nondeterministic search. The difference
between the two strategies becomes apparent when we have queries which would
generate an infinite number of bindings, of which we want a finite subset. For
example, therules

(<- (all-elements ?7x nil))
(<- (all-elements ?x (?x . 7rest))
(all-elements ?x 7rest))

imply al the facts of theform (all-elements X Yy), where every member of y
isequal to x. Without backtracking we could handle querieslike:

(all-elements a (a a a))
(all-elements a (a a b))
(all-elements ?x (a a a))

However, thequery (all-elements a 7x) issatisfied for aninfinite number of
possible 7x: nil, (a), (a a), and so on. If wetry to generate answers for this
query by iteration, theiteration will never terminate. Even if we only wanted one
of the answers, we would never get aresult from an implementation which had to
generate all the bindings for the query beforeit could begin to iterate through the
Lisp expressions following it.

Thisiswhy with-inference interleaves the generation of bindingswith the
evaluation of its body. Where queries could lead to an infinite number of answers,
the only successful approach will be to generate answersone at atime, and return
to pick up new ones by restarting the suspended search. Because it uses choose
and fail, our program can handle this case:

> (block nil
(with-inference (all-elements a 7x)
(if (= (length ?x) 3)
(return 7x)
(princ 7x))))
NIL(A) (A B
(A A D)

334 PROLOG

Like any other Prolog implementation, ours simulates nondeterminism by
doing depth-first search with backtracking. Intheory, “logic programs’ run under
true nondeterminism. In fact, Prolog implementations aways use depth-first
search. Far from being inconvenienced by this choice, typical Prolog programs
depend onit. In atruly nondeterministic world, the query

(and (all-elements a ?x) (length 7x 3))

has an answer, but it takes you arbitrarily long to find out what it is.

Not only does Prolog use the depth-first implementation of nondeterminism,
it uses a version equivalent to that defined on page 293. As explained there, this
implementation is not always guaranteed to terminate. So Prolog programmers
must take deliberate steps to avoid loops in the search space. For example, if we
had defined member in the reverse order

(<- (member ?x (_ . 7rest)) (member 7x ?rest))
(<- (member 7x (?x . 7rest)))

then logically it would have the same meaning, but as a Prolog program it would
have a different effect. The original definition of member would yield an infinite
stream of answers in response to the query (member ’a 7x), but the reversed
definition will yield an infinite recursion, and no answers.

245 New Implementation

In this section we will see another instance of afamiliar pattern. In Section 18.4,
we found after writing the initial version that if-match could be made much
faster. By taking advantage of information known at compile-time, we were
able to write a new version which did less work at runtime. We saw the same
phenomenon on alarger scale in Chapter 19. Our query interpreter was replaced
by an equivalent but faster version. The same thing is about to happen to our
Prolog interpreter.

Figures 24.7, 24.8, and 24.10 define Prolog in a different way. The macro
with-inference used to be just the interface to a Prolog interpreter. Now it is
most of the program. The new program has the same general shape asthe old one,
but of the functions defined in Figure 24.8, only prove iscaled at runtime. The
othersarecalled by with-inference in order to generate its expansion.

Figure 24.7 shows the new definition of with-inference. ASin if-match
or with-answer, pattern variables are initially bound to gensyms to indicate
that they haven't yet been assigned real values by matching. Thus the function
varsym?, Whichmatch and fullbind use to detect variables, has to be changed
to look for gensyms.

24.5 NEW IMPLEMENTATION 335

(defmacro with-inference (query &rest body)
(let ((vars (vars-in query #’simple?)) (gb (gensym)))
¢ (with-gensyms ,vars
(setq *paths* nil)
(=bind (,gb) ,(gen-query (rep_ query))
(let , (mapcar #’(lambda (v)
“(,v (fullbind ,v ,gb)))
vars)
,@body)
(fail)))))

(defun varsym? (x)
(and (symbolp x) (not (symbol-package x))))

Figure 24.7: New toplevel macro.

To generate the code to establish bindings for the query, with-inference
cals gen-query (Figure 24.8). The first thing gen-query does is look to see
whether itsfirst argument is a complex query beginning with an operator like and
or or. This process continues recursively until it reaches smple queries, which
are expanded into calls to prove. In the original implementation, such logical
structure was analyzed at runtime. A complex expression occurring in the body
of arule had to be analyzed anew each time the rule was used. Thisis wasteful
because the logical structure of rules and queries is known beforehand. The new
implementation decomposes complex expressions at compile-time.

As in the previous implementation, awith-inference expression expands
into codewhichiteratesthrough the Lisp code following the query with the pattern
variables bound to successive values established by the rules. The expansion of
with-inference concludeswith afail, which will restart any saved states.

The remaining functions in Figure 24.8 generate expansions for complex
gueries—aqueries joined together by operatorslike and, or, and not. If we have
aquery like

(and (big 7x) (red 7x))

then we want the Lisp code to be evaluated only with those ?x for which both
conjuncts can be proved. So to generate the expansion of an and, we nest
the expansion of the second conjunct within that of the first. When (big 7x)
succeedswetry (red 7x),andif that succeeds, we evaluatethe Lisp expressions.
So the whole expression expands asin Figure 24.9.

336 PROLOG

(defun gen-query (expr &optional binds)
(case (car expr)
(and (gen-and (cdr expr) binds))
(or (gen-or (cdr expr) binds))
(not (gen-not (cadr expr) binds))

(t ‘(prove (list ’,(car expr)
,@(mapcar #’form (cdr expr)))
,binds))))

(defun gen-and (clauses binds)
(if (null clauses)
‘(=values ,binds)
(let ((gb (gensym)))
“(=bind (,gb) ,(gen-query (car clauses) binds)
, (gen-and (cdr clauses) gb)))))

(defun gen-or (clauses binds)
‘(choose
,@(mapcar #’(lambda (c) (gen-query c binds))
clauses)))

(defun gen-not (expr binds)
(let ((gpaths (gensym)))
‘(let ((,gpaths *pathsx*))
(setq *paths* nil)
(choose (=bind (b) ,(gen-query expr binds)
(setq *paths* ,gpaths)
(fail))
(progn
(setq *paths* ,gpaths)
(=values ,binds))))))

(=defun prove (query binds)
(choose-bind r #*rules* (=funcall r query binds)))

(defun form (pat)
(if (simple? pat)
pat
“(cons ,(form (car pat)) ,(form (cdr pat)))))

Figure 24.8: Compilation of queries.

24.6 ADDING PROLOG FEATURES 337

(with-inference (and (big 7x) (red 7x))
(print 7x))

expandsinto:

(with-gensyms (7x)
(setq *paths* nil)
(=bind (#:g1) (=bind (#:g2) (prove (list ’big 7x) nil)
(=bind (#:g3) (prove (list ’red 7x) #:g2)
(=values #:g3)))
(let ((?x (fullbind ?7x #:g1)))
(print 7x))
(fail)))

Figure 24.9: Expansion of a conjunction.

An and means nesting; an or means a choose. Given aquery like
(or (big 7x) (red 7x))

wewant the Lisp expressionsto be eval uated for values of 7x established by either
subquery. The function gen-or expands into a choose over the gen-query of
each of the arguments. Asfor not, gen-not is almost identical to prove-not
(Figure 24.3).

Figure 24.10 shows the code for defining rules. Rules are translated directly
into Lisp code generated by rule-fn. Since <- now expandsrulesinto Lisp code,
compiling afile full of rule definitions will cause rulesto be compiled functions.

When a rule-function is sent a pattern, it tries to match it with the head of
the rule it represents. |f the match succeeds, the rule-function will then try to
establish bindings for the body. Thistask is essentially the same as that done by
with-inference, and in fact rule-fn ends by caling gen-query. The rule-
function eventually returns the bindings established for the variables occurringin
the head of therule.

24.6 Adding Prolog Features

The code already presented can run most “pure” Prolog programs. The final step
isto add extras like cuts, arithmetic, and I/0.

Putting a cut in a Prolog rule causes the search tree to be pruned. Ordinarily,
when our program encountersa fail, it backtracksto the last choice point. The

338 PROLOG

(defvar *rules* nil)

(defmacro <- (con &rest ant)
(let ((ant (if (= (length ant) 1)
(car ant)
‘(and ,@ant))))
‘(length (conclf *rules*
, (rule-fn (rep_ ant) (rep_ con))))))

(defun rule-fn (ant con)
(with-gensyms (val win fact binds)
‘(=lambda (,fact ,binds)
(with-gensyms , (vars-in (list ant con) #’simple?)
(multiple-value-bind
(,val ,win)
(match ,fact
(list ’, (car con)
,@(mapcar #’form (cdr con)))
,binds)
(if ,win
, (gen-query ant val)

(fail)))))))

Figure 24.10: Code for defining rules.

implementation of choosein Section 22.4 stores choice pointsintheglobal variable
xpaths*. Calling fail restartsthe search at the most recent choice point, which
is the car of *paths*. Cuts introduce a new complication. When the program
encountersa cut, it will throw away some of the most recent choice points stored

on *paths*—specificaly, all those stored since thelast call to prove.

The effect is to make rules mutually exclusive. We can use cuts to get the
effect of acase statement in Prolog programs. For example, if we defineminimum

this way:

(<= (minimum ?7x 7y 7x) (lisp (<= 7x 7y)))
(<~ (minimum ?x 7y ?y) (lisp (> ?x ?y)))

it will work correctly, but inefficiently. Given the query

(minimum 1 2 ?7x)

24.6 ADDING PROLOG FEATURES 339

Prolog will immediately establish that 7x = 1 from thefirst rule. A human would
stop here, but the program will waste time looking for more answers from the
second rule, becauseit has been given no indication that thetwo rulesare mutually
exclusive. On the average, this version of minimum will do 50% more work than
it needsto. We can fix the problem by adding a cut after the first test:

(<= (minimum ?7x ?y ?x) (lisp (<= 7x ?7y)) (cut))
(<= (minimum ?x ?y ?y))

Now when Prolog has finished with the first rule, it will fail all the way out of the
query instead of moving on to the next rule.

It is trivialy easy to modify our program to handle cuts. On each cal to
prove, the current state of *paths* is passed as a parameter. |f the program
encountersacut, it just sets*paths* back to the old value passed inthe parameter.
Figures 24.11 and 24.12 show the code which has to be modified to handle cuts.
(Changed lines are marked with semicolons. Not all the changes are due to cuts.)

Cuts which merely make a program more efficient are called green cuts. The
cut in minimum was a green cut. Cuts which make a program behave differently
are called red cuts. For example, if we define the predicate artist asfollows:

(<- (artist ?7x) (sculptor 7x) (cut))
(<- (artist 7x) (painter 7x))

theresult isthat, if there are any sculptors, then the query can end there. If there
are no sculptors then painters get to be considered as artists:

> (progn (<- (painter ’klee))
(<- (painter ’soutine)))
4
> (with-inference (artist 7x)
(print 7x))
KLEE
SOUTINE
Q

But if there are sculptors, the cut stops inference with thefirst rule:

> (<- (sculptor ’hepworth))

5

> (with-inference (artist 7x)
(print 7x))

HEPWORTH

@

340 PROLOG

(defun rule-fn (ant con)
(with-gensyms (val win fact binds paths)
‘(=lambda (,fact ,binds ,paths)
(with-gensyms , (vars-in (list ant con) #’simple?)
(multiple-value-bind
(,val ,win)
(match ,fact
(1ist ’,(car con)
,@(mapcar #’form (cdr con)))
,binds)
(if ,win
, (gen-query ant val paths)
(fail)))))))

(defmacro with-inference (query &rest body)
(let ((vars (vars-in query #’simple?)) (gb (gensym)))
‘(with-gensyms ,vars
(setq *paths* nil)
(=bind (,gb) ,(gen-query (rep_ query) nil ’#*paths*)
(let , (mapcar #’(lambda (v)
“(,v (fullbind ,v ,gb)))
vars)
,@body)
(fail)))))

(defun gen-query (expr binds paths)
(case (car expr)
(and (gen-and (cdr expr) binds paths))
(or (gen-or (cdr expr) binds paths))
(not (gen-not (cadr expr) binds paths))
(1isp (gen-lisp (cadr expr) binds))
(is (gen-is (cadr expr) (third expr) binds))
(cut ‘(progn (setq *paths* ,paths)
(=values ,binds)))
(t ‘(prove (list ’,(car expr)
,@(mapcar #’form (cdr expr)))
,binds *paths*))))

(=defun prove (query binds paths)
(choose-bind r *rules*

(=funcall r query binds paths)))

Figure 24.11: Adding support for new operators.

H

24.6 ADDING PROLOG FEATURES 341

(defun gen-and (clauses binds paths)
(if (null clauses)
‘(=values ,binds)
(let ((gb (gensym)))
‘(=bind (,gb) ,(gen—-query (car clauses) binds paths);
, (gen-and (cdr clauses) gb paths))))) ;
(defun gen-or (clauses binds paths)
‘(choose
,@(mapcar #’(lambda (c) (gen-query c binds paths))
clauses)))

(defun gen-not (expr binds paths)
(let ((gpaths (gensym)))
‘(let ((,gpaths *paths*))

(setq *paths* nil)

(choose (=bind (b) , (gen-query expr binds paths)
(setq *paths* ,gpaths)
(fail))

(progn

(setq *paths* ,gpaths)
(=values ,binds))))))

H

(defmacro with-binds (binds expr)
‘(let ,(mapcar #’(lambda (v) ‘(,v (fullbind ,v ,binds)))
(vars-in expr))
,eXpr))

(defun gen-lisp (expr binds)
¢(if (with-binds ,binds ,expr)
(=values ,binds)
(fail)))

(defun gen-is (exprl expr2 binds)
‘(aif2 (match ,exprl (with-binds ,binds ,expr2) ,binds)
(=values it)
(fail)))

Figure 24.12: Adding support for new operators.

342 PROLOG

{rule) : (<- (sentence) (query))
(query) : (not (query))
: (and (query)*)
 (Lisp (lisp expression))
: (is (variable) (lisp expression))
: (cut)
: (fail)
. (sentence)
(sentence) : ((symbol) (argument)*)
(argument) : (variable)
. (lisp expression)
(varigble) : ?(symbol)

Figure 24.13: New syntax of rules.

The cut is sometimes used in conjunction with the Prolog fail operator. Our
function fail does exactly the same thing. Putting a cut in arule makesit like a
one-way street: once you enter, you're committed to using only that rule. Putting
a cut-fail combination in a rule makes it like a one-way street in a dangerous
neighborhood: once you enter, you're committed to leaving with nothing. A
typical exampleisin the implementation of not-equal:

(<~ (not-equal ?x ?x) (cut) (fail))
(<- (not-equal ?x ?7y))

The first rule here is atrap for impostors. If we're trying to prove a fact of the
form (not-equal 1 1), it will match with the head of the first rule and thus be
doomed. The query (not-equal 1 2), on the other hand, will not match the
head of the first rule, and will go on to the second, where it succeeds:

> (with-inference (not-equal ’a ’a)

(print t))

Q

> (with-inference (not-equal ’(a a) ’(a b))
(print t))

T

Q

The code shownin Figures24.11 and 24.12 al so gives our program arithmetic,
I/0, and the Prolog is operator. Figure 24.13 shows the complete syntax of rules
and queries.

24.6 ADDING PROLOG FEATURES 343

We add arithmetic (and more) by including atrapdoor to Lisp. Now inaddition
to operators like and and or, we have the 1isp operator. This may be followed
by any Lisp expression, which will be evaluated with the variableswithin it bound
to the bindings established for them by the query. If the expression evaluates to
nil, thenthelisp expression asawholeisequivalenttoa (fail); otherwiseit
isequivalentto (and).

Asan example of the use of the 1isp operator, consider the Prolog definition
of ordered, whichistrueof listswhoseelementsare arranged in ascending order:

(<~ (ordered (?x)))

(<- (ordered (7x 7y . 7ys))
(lisp (<= 7x ?7y))
(ordered (?7y . ?7ys)))

In English, alist of one element is ordered, and alist of two or more elementsis
ordered if the first element of the list is less than or equal to the second, and the
list from the second element onis ordered.

> (with-inference (ordered ’(1 2 3))

(print t))

T

Q

> (with-inference (ordered ’(1 3 2))
(print t))

Q

By means of the 1isp operator we can provide other features offered by
typical Prologimplementations. Prolog1/o predicates can be duplicated by putting
Lisp I/o calls within 1isp expressions. The Prolog assert, which as a side-
effect defines new rules, can be duplicated by calling the <- macro within 1isp
expressions.

The is operator offersaform of assignment. It takes two arguments, a pattern
and aLisp expression, and tries to match the pattern with the result returned by the
expression. If the match fails, then the program calls fail; otherwiseit proceeds
with the new bindings. Thus, the expression (is ?x 1) hasthe effect of setting
7x to 1, or more precisaly, insisting that 7x be 1. We need is to calculate—for
example, to calculate factorials:

(<= (factorial 0 1))
(<= (factorial ?n ?7f)
(1isp (> 7n 0))
(is ?n1 (- 7n 1))
(factorial 7n1 ?7f1)
(is ?f (x 7n ?£f1)))

344 PROLOG

We use this definition by making a query with a number n as the first argument
and avariable as the second:

> (with-inference (factorial 8 7x)
(print 7x))

40320

Q

Note that the variables used in a 1isp expression, or in the second argument to
is, must have established bindings for the expression to return a value. This
restriction holds in any Prolog. For example, the query:

(with-inference (factorial ?7x 120) ; wrong
(print 7x))

won't work with this definition of factorial, because 7n will be unknown when
the 1isp expression is evaluated. So not al Prolog programs are like append:
many insist, like factorial, that certain of their arguments be real values.

24.7 Examples

Thisfina section shows how to write some example Prolog programsin our
implementation. The rules in Figure 24.14 define quicksort. These rules imply
facts of the form (quicksort X y), wherexisalistandyisalist of the same
elements sorted in ascending order. Variables may appear in the second argument
position:

> (with-inference (quicksort ’(3 2 1) ?7x)
(print 7x))

(123)

Q

Ani/oloopisatest for our Prolog, becauseit makesuse of the cut, 1isp, and
is operators. The codeis shown in Figure 24.15. These rules should be invoked
by trying to prove (echo), with no arguments. That query will match the first
rule, which will bind ?x to the result returned by read, and then try to establish
(echo 7x). The new query can match either of the second two rules. If 7x =
done, then the query will terminate in the second rule. Otherwise the query will
only match the third rule, which prints the value read, and starts the process over

again.

24.7

EXAMPLES

345

(setq *rulesx* nil)

(<- (append nil ?7ys 7ys))

(<- (append (?x . ?xs) 7ys (7x . 7zs))
(append 7xs 7ys 7zs))

(<- (quicksort (?x . ?xs) 7ys)
(partition 7xs ?x 7littles 7bigs)
(quicksort 7littles 71s)

(quicksort ?bigs 7bs)
(append 71s (?x . 7bs) 7ys))

(<~ (quicksort nil nil))

(<- (partition (?x . 7xs) 7y (?x . 71ls) 7bs)
(lisp (<= 7x ?7y))

(partition ?xs 7y 7ls 7bs))

(<- (partition (?7x . ?xs) 7y 7ls (?x . 7bs))
(lisp (> ?7x 7y))

(partition 7xs 7y 7ls 7bs))

(<- (partition nil 7y nil nil))

Figure 24.14: Quicksort.

(<~ (echo)

(is ?x (read))
(echo 7x))

(<= (echo ’done)
(cut))

(<~ (echo 7x)

(lisp (progl t (format t "“A"%" ?7x)))
(is 7y (read))

(cut)

(echo ?7y))

Figure 24.15: Ani/oloop in Prolog.

346 PROLOG

Collectively, the rules define a program that will continue to echo what you
type, until you type done:

> (with-inference (echo))
hi

HI

ho

HO

done

Q

Programs like this are difficult to read because they subvert the abstract model of
Prolog. It might beeasier to understandecho if welook at aliteral Lisptrandation

(defun echo (&rest args)
(cond ((null args) (echo (read)))
((eq (car args) ’done) nil)
(t (format t ""A~Y%" (car args))
(echo (read)))))

which in idiomatic Common Lisp would be:

(defun echo (&optional (arg (read)))
(unless (eq arg ’done)
(format t "“A7Y" arg)
(echo)))

24.8 The Senses of Compile

The word “compile” has severa senses. In the most general sense, to compileis
to transform some abstract description of a program into lower-level code. The
program described in this chapter is certainly a compiler in this sense, because it
trandates rulesinto Lisp functions.

In a more specific sense, to compile is to transform a program into machine
language. Good Common Lisps compile functions into native machine code. As
mentioned on page 25, if code which generates closures is compiled, it will yield
compiled closures. Thus the program described here is a compiler in the stricter
senseaswell. Inagood Lisp, our Prolog programswill get translated into machine
language.

However, the program described here is still not a Prolog compiler. For
programming languages there is a still more specific sense of “compile,” and
merely generating machinecodeisnot enoughto satisfy thisdefinition. A compiler
for aprogramming language must optimize as well astranslate. For example, if a
Lisp compiler is asked to compile an expression like

24.8 THE SENSES OF COMPILE 347

(+ x (+ 2 5))

it should be smart enough to realize that there is no reason to wait until runtime
to evaluate (+ 2 5). The program can be optimized by replacing it with 7, and
instead compiling

+x7

In our program, all the compiling is done by the Lisp compiler, and it is
looking for Lisp optimizations, not Prolog optimizations. Its optimizations will
be valid ones, but too low-level. The Lisp compiler doesn’'t know that the code
it's compiling is meant to represent rules. While areal Prolog compiler would be
looking for rulesthat could be transformed into loops, our programislooking for
expressions that yield constants, or closures that could be allocated on the stack.

Embedded languages allow you to make the most of available abstractions,
but they are not magic. If you want to travel all the way from a very abstract
representation to fast machine code, someone still hasto tell the computer how to
doit. Inthis chapter we travelled a good part of that distance with surprisingly
little code, but that is not the same as writing a true Prolog compiler.

