22

Nondeter minism

Programming languages save us from being swamped by amass of detail. Lispis
agood language because it handles so many details itself, enabling programmers
to make the most of their limited tolerance for complexity. This chapter describes
how macros can make Lisp handle another important class of details: the details
of transforming a nondeterministic algorithm into a deterministic one.

Thischapter isdivided into five parts. Thefirst explainswhat nondeterminism
is. The second describesaSchemeimplementation of nondeterministic chooseand
fail which uses continuations. The third part presents Common Lisp versions of
choose and fail which build upon the continuation-passing macros of Chapter 20.
The fourth part shows how the cut operator can be understood independently
of Prolog. The final part suggests refinements of the original nondeterministic
operators.

The nondeterministic choice operators defined in this chapter will be used to
write an ATN compiler in Chapter 23 and an embedded Prolog in Chapter 24.

22.1 The Concept

A nondeterministic algorithm is one which relies on a certain sort of supernatural
foresight. Why talk about such al gorithmswhen wedon’t have accessto computers
with supernatural powers? Because anondeterministical gorithm can be simulated
by a deterministic one. For purely functiona programs—that is, those with
no side-effects—simulating nondeterminism is particularly straightforward. In
purely functional programs, nondeterminism can be implemented by search with
backtracking.

286



22.1 THE CONCEPT 287

This chapter shows how to simulate nondeterminism in functional programs.
If we have a smulator for nondeterminism, we can expect it to produce results
whenever a truly nondeterministic machine would. In many cases, writing a
program which depends on supernatural insight to solve a problem is easier than
writing one which doesn’t, so such a simulator would be a good thing to have.

In this section we will define the class of powers that nondeterminism allows
us; the next section demonstrates their utility in some sample programs. The
examples in these first two sections are written in Scheme. (Some differences
between Scheme and Common Lisp are summarized on page 259.)

A nondeterministic algorithm differs from a deterministic one because it can
use the two special operators choose and fail. Choose is afunction which takesa
finite set and returns one element. To explain how choose chooses, we must first
introduce the concept of a computational future.

Here we will represent choose as a function choose which takes a list and
returns one element. For each element, there is a set of futures the computation
could have if that element were chosen. In the following expression

(let ((x (choose (1 2 3))))
(if (odd? x)
(+ x 1)
x))

there are three possible futures for the computation when it reaches the point of
the choose:

1. If choose returns 1, the computation will go through the then-clause of the
if, and will return 2.

2. If choose returns 2, the computation will go through the el se-clause of the
if, and will return 2.

3. If choose returns 3, the computation will go through the then-clause of the
if, and will return 4.

In this case, we know exactly what the future of the computation will be as soon
aswe seewhat choose returns. Inthe general case, each choiceisassociated with
a set of possible futures, because within some futures there could be additional
chooses. For example, with

(let ((x (choose ’(2 3))))
(if (odd? x)
(choose ’(a b))
x))



288 NONDETERMINISM

there are two sets of futures at the time of thefirst choose:

1. If choose returns 2, the computation will go through the else-clause of the
if, and will return 2.

2. If choose returns 3, the computation will go through the then-clause of
the if. At this point, the path of the computation splits into two possible
futures, onein which a isreturned, and onein which b is.

The first set has one future and the second set has two, so the computation has
three possible futures.

The point to remember is, if choose is given a choice of several aternatives,
each oneis associated with a set of possible futures. Which choice will it return?
We can assume that choose works as follows:

1. It will only return achoice for which some future does not contain acall to
fail.

2. A choose over zero dternativesis equivalent to afail.
So, for example, in

(let ((x (choose ’(1 2))))
(if (odd? x)
(fail)
x))

each of the possible choices has exactly one future. Since the future for a choice
of 1 containsacall to fail, only 2 can be chosen. So the expression as awhole
is deterministic: it alwaysreturns 2.

However, the following expression is not deterministic:

(let ((x (choose ’(1 2))))
(if (odd? x)
(let ((y (choose ’(a b))))
(if (eq? y ’a)
(fail)
y))
x))

At thefirst choose, there are two possible futuresfor achoice of 1, and onefor a
choice of 2. Within the former, though, the futureis really deterministic, because
achoice of a would result in acall to fail. So the expression as a whole could
return either b or 2.

Finally, thereis only one possible value for the expression



22.2 THE CONCEPT 289

(let ((x (choose (1 2))))
(if (odd? x)
(choose ’())
x))

because if 1 is chosen, the future goes through a choose with no choices. This
exampleis thus equivalent to the last but one.

It may not be clear yet from the preceding examples, but we have just got
ourselves an abstraction of astounding power. In nondeterministic algorithmswe
are alowed to say “ choose an element such that nothing we do later will resultina
cal tofail.” For example, thisisa perfectly legitimate nondeterministic algorithm
for discovering whether you have a known ancestor called Igor:

Function Ig(n)
if name(n) = *Igor’
then returnn
eseif parents(n)
then return Ig(choose(parents(n)))
elsefail

The fail operator is used to influence the value returned by choose. If we
ever encounter afail, choose would have chosen incorrectly. By definition choose
guesses correctly. So if we want to guarantee that the computation will never
pursue a certain path, al we need do is put a fail somewherein it, and that path
will never be followed. Thus, as it works recursively through generations of
ancestors, the function Ig is able to choose at each step a path which leads to an
| gor—to guess whether to follow the mother’s or father’s line.

Itisasif aprogram can specify that choose pick some element from a set of
aternatives, use the value returned by choose for as long as it wants, and then
retroactively decide, by using fail as a veto, what it wants choose to have picked.
And, presto, it turns out that that’s just what choose did return. Hence the model
in which choose has foresight.

In reality choose cannot have supernatural powers. Any implementation of
choose must simul ate correct guessing by backtracking whenit discoversmistakes,
like arat finding its way through a maze. But all this backtracking can be done
beneath the surface. Once you have someform of choose and fail, you get to write
algorithms like the one above, as if it really were possible to guess what ancestor
to follow. By using choose it is possible to write an algorithm to search some
problem space just by writing an algorithm to traverseit.



290 NONDETERMINISM

(define (descent nl n2)
(if (eq? nl n2)
(list n2)
(let ((p (try-paths (kids nl1) n2)))
(if p (cons nl p) #£))))

(define (try-paths ns n2)
(if (null? ns)
#f
(or (descent (car ns) n2)
(try-paths (cdr ns) n2))))

Figure 22.1: Deterministic tree search.

(define (descent nl n2)
(cond ((eq? nl n2) (1list n2))
((null? (kids n1)) (fail))
(else (cons nl1 (descent (choose (kids nl1)) n2)))))

Figure 22.2; Nondeterministic tree search.

222 Search

Many classic problems can be formulated as search problems, and for such prob-
lems nondeterminism often turns out to be a useful abstraction. Suppose nodes
is bound to alist of nodes in atree, and (kids n) is a function which returns
the descendants of node n, or #£ if there are none. We want to write a function
(descent N ny) which returns alist of nodes on some path from n; to its de-
scendant ny, if there is one. Figure 22.1 shows a deterministic version of this
function.

Nondeterminism allowsthe programmer to ignorethe detail s of finding a path.
It's possible simply to tell choose to find a node n such that thereis a path from
n to our destination. Using nondeterminism we can write the ssimpler version of
descent shown in Figure 22.2.

The version shown in Figure 22.2 does not explicitly search for anode on the
right path. It is written on the assumption that choose has chosen an n with the
desired properties. If we are used to looking at deterministic programs, we may
not perceive that choose has to work as if it could guess what n would make it



22.2 SEARCH 291

(define (two-numbers)
(list (choose (0 1 2 3 4 5))
(choose (0 1 2 3 4 5))))

(define (parlor-trick sum)
(let ((nums (two-numbers)))
(if (= (apply + nums) sum)
‘(the sum of ,@nums)

(fail))))

Figure 22.3: Choicein asubroutine.

through the computation which follows without failing.

Perhaps a more convincing example of the power of choose is its ability to
guess what will happen even in calling functions. Figure 22.3 contains a pair
of functions to guess two numbers which sum to a number given by the caller.
Thefirst function, two-numbers, nondeterministically chooses two numbers and
returnsthemin alist. When we call parlor-trick, it calls two-numbers for a
list of two integers. Note that, in making its choice, two-numbers doesn’'t have
access to the number entered by the user.

If thetwo numbersguessed by choose don't sum to the number entered by the
user, the computationfails. We canrely on choose having avoided computational
paths which fail, if there are any which don't. Thus we can assume that if the
caller givesanumber in theright range, choose will have guessed right, asindeed
it does:!

> (parlor-trick 7)
(THE SUM OF 2 5)

In simple searches, the built-in Common Lisp function £ind-if would do
just as well. Where is the advantage of nondeterministic choice? Why not just
iterate through the list of alternatives in search of the element with the desired
properties? The crucial difference between choose and conventional iteration is
that its extent with respect to fails is unbounded. Nondeterministic choose can
see arbitrarily far into the future; if something is going to happen at any point in
the future which would have invalidated some guess choose might make, we can
assume that choose knows to avoid guessing it. Aswe saw in parlor-trick,

1Since the order of argument evaluation is unspecified in Scheme (as opposed to Common Lisp,
which specifies |eft-to-right), this call might also return (THE SUM OF 5 2).



292 NONDETERMINISM

the fail operator works even after we return from the function in which the choose
occurs.

This kind of failure happens in the search done by Prolog, for example.
Nondeterminism is useful in Prolog because one of the central features of this
language is its ability to return answers to a query one at atime. By following
this course instead of returning all the valid answers at once, Prolog can handle
recursive rules which would otherwise yield infinitely large sets of answers.

Theinitial reactionto descent may beliketheinitial reaction to amerge sort:
where does the work get done? Asin amerge sort, the work gets doneimplicitly,
but it does get done. Section 22.3 describes an implementation of choosein which
all the code examples presented so far are real running programs.

These examples show the value of nondeterminism as an abstraction. Thebest
programming language abstractions save not just typing, but thought. In automata
theory, some proofs are difficult even to conceive of without relying on nonde-
terminism. A language which allows nondeterminism may give programmers a
similar advantage.

22.3 Scheme Il mplementation

This section explains how to use continuationsto simulate nondeterminism. Fig-
ure 22.4 contains Schemeimplementationsof chooseandfail. Beneath thesurface,
choose and fail simulate nondeterminism by backtracking. A backtracking
search program must somehow store enough information to pursue other aterna-
tivesif the chosen onefails. Thisinformationisstoredintheform of continuations
on the global list *pathsx*.

Thefunction choose ispassed alist of alternativesinchoices. If choicesis
empty, then choose callsfail, which sendsthe computation back to the previous
choose. If choices is (first . rest), choose first pushes onto *paths* a
continuation in which choose is called on rest, then returnsfirst.

The function fail is simpler: it just pops a continuation off *paths* and
calsit. If there aren't any saved paths left, then fail returns the symbol e.
However, it won't do simply to return it as afunction ordinarily returnsvalues, or
it will be returned asthe value of the most recent choose. What we really want to
do isreturn @ right to the toplevel. We do this by binding cc to the continuation
where fail is defined, which presumably is the toplevel. By calling cc, fail
can return straight there.

The implementation in Figure 22.4 treats *paths* as a stack, aways fail-
ing back to the most recent choice point. This strategy, known as chronological
backtracking, results in depth-first search of the problem space. The word “non-
determinism” is often used as if it were synonymous with the depth-first imple-



22.4 SCHEME IMPLEMENTATION 293

(define *paths* ())
(define failsym ’@)

(define (choose choices)
(if (null? choices)
(fail)
(call-with-current-continuation
(lambda (cc)
(set! *paths*
(cons (lambda ()
(cc (choose (cdr choices))))
xpaths*))
(car choices)))))

(define fail)

(call-with-current-continuation
(lambda (cc)
(set! fail
(lambda ()
(if (null? *pathsx*)
(cc failsym)
(let ((pl (car *paths*)))
(set! xpaths* (cdr *pathsx))
(PN

Figure 22.4: Scheme implementation of choose and fail.

mentation. Floyd's classic paper on nondeterministic algorithmsusesthetermin o
this sense, and this is aso the kind of nondeterminism we find in nondetermin-
istic parsers and in Prolog. However, it should be noted that the implementation
given in Figure 22.4 is not the only possible implementation, nor even a correct
one. In principle, choose ought to be able to choose an object which meets any
computable specification. But a program which used these versions of choose
and fail to search agraph might not terminate, if the graph contained cycles.

In practice, nondeterminism usually means using adepth-firstimplementation
equivalent to the one in Figure 22.4, and leaving it to the user to avoid loopsin
the search space. However, for readers who are interested, the last section in this
chapter describes how to implement true choose and fail .



294 NONDETERMINISM

22.4 Common Lisp Implementation

This section describes how to write a form of choose and fail in Common Lisp.
Asthe previous section showed, call/cc makesit easy to simulate nondetermin-
ism in Scheme. Continuations provide the direct embodiment of our theoretical
concept of a computational future. In Common Lisp, we can use instead the
continuation-passing macros of Chapter 20. With these macros we will be ableto
provide aform of choose slightly uglier than the Scheme version presented in the
previous section, but equivalent in practice.

Figure 22.5 containsa Common Lisp implementation of fail, and two versions
of choose. The syntax of a Common Lisp choose is dightly different from the
Scheme version. The Scheme choose took one argument: alist of choices from
which to select a value. The Common Lisp version has the syntax of a progn.
It can be followed by any number of expressions, from which it chooses one to
evauate:

> (defun do2 (x)
(choose (+ x 2) (x x 2) (expt x 2)))
D02
> (do2 3)
5
> (fail)
6

At the toplevel, we see more clearly the backtracking which underlies nondeter-
ministic search. The variable *pathsx* is used to store paths which have not yet
been followed. When the computation reaches a choose expression with several
aternatives, thefirst aternativeis evaluated, and the remaining choices are stored
on *paths*. If the program later on encounters a fail, the last stored choice
will be popped off *paths* and restarted. When there are no more paths left to
restart, fail returnsaspecia value:

> (fail)
9
> (fail)
Q

In Figure 22.5 the constant failsym, which represents failure, is defined to be
the symbol @. If you wanted to be able to have @ as an ordinary return value, you
could make failsym agensym instead.

The other nondeterministic choice operator, choose-bind, has a dlightly
different form. It should be given a symboal, alist of choices, and a body of code.
It will do achoose on thelist of choices, bind the symbol to the value chosen, and
evaluate the body of code:



22.4 COMMON LISP IMPLEMENTATION

295

(defparameter *paths* nil)
(defconstant failsym ’@)

(defmacro choose (&rest choices)
(if choices
‘ (progn
,@(mapcar #’(lambda (c)

(reverse (cdr choices)))
, (car choices))
’(fail)))

(defmacro choose-bind (var choices &body body)
“(cb #’(lambda (,var) ,@body) ,choices))

(defun cb (fn choices)
(if choices

(progn

(if (cdr choices)
(push #’(lambda () (cb fn (cdr choices)))
xpaths*))

(funcall fn (car choices)))

(fail)))

(defun fail ()
(if *pathsx*
(funcall (pop *paths*))
failsym))

Figure 22.5: Nondeterministic operatorsin Common Lisp.

‘(push #’(lambda () ,c) #*pathsx*))

> (choose-bind x °’(marrakesh strasbourg vegas)
(format nil "Let’s go to "A." x))

"Let’s go to MARRAKESH."

> (fail)

"Let’s go to STRASBOURG."

It is only for convenience that the Common Lisp implementation provides two
choice operators. You could get the effect of choose from choose-bind by

always trandating

(choose (foo) (bar))



296 NONDETERMINISM

into

(choose-bind x ’ (1 2)
(case x
(1 (foo0))
(2 (bar))))

but programs are easier to read if we have a separate operator for this case.

The Common Lisp choice operators store the bindings of relevant variables
using closures and variable capture. As macros, choose and choose-bind get
expanded within the lexical environment of the containing expressions. Notice
that what they push onto *paths* isaclosure over the choiceto be saved, locking
in all the bindings of the lexical variables referred to within it. For example, in
the expression

(let ((x 2))
(choose
+x 1)
(+ x 100)))

the value of x will be needed when the saved choices are restarted. Thisis why
choose iswritten to wrap its arguments in lambda-expressions. The expression
above gets macroexpanded into:

(Qet ((x 2))
(progn
(push #’(lambda () (+ x 100))
*paths*)
(+ x 1))

The object which gets stored on *paths* isaclosure containing apointer to x. It
isthe need to preserve variablesin closureswhich dictates the difference between
the syntax of the Scheme and Common Lisp choice operators.

If we use choose and fail together with the continuation-passing macros
of Chapter 20, a pointer to our continuation variable *cont* will get saved as
well. By defining functions with =defun, calling them with =bind, and having
them return values with =values, we will be able to use nondeterminismin any
Common Lisp program.

With these macros, we can successfully run the example in which the nonde-
terministic choice occurs in a subroutine. Figure 22.6 shows the Common Lisp
version of parlor-trick, which worksasit did in Scheme:

2If desired, the exported interface to this code could consist of just a single operator, because
(fail) isequivalent to (choose).



22.4 COMMON LISP IMPLEMENTATION

297

(=defun two-numbers ()
(choose-bind n1 (0 1 2 3 4
(choose-bind n2 (0 1 2 3
(=values ni1 n2))))

5)
4 5)

(=defun parlor-trick (sum)
(=bind (n1 n2) (two-numbers)
(if (= (+ n1 n2) sum)
‘(the sum of ,n1 ,n2)
(fail))))

Figure 22.6: Common Lisp choicein a subroutine.

> (parlor-trick 7)
(THE SUM OF 2 5)

This works because the expression
(=values ni1 n2)

gets macroexpanded into

(funcall *cont* nl n2)

within the choose-binds. Each choose-bind isin turn macroexpanded into a
closure, which keeps pointersto all the variablesreferred to in the body, including

*xcont*.

The restrictions on the use of choose, choose-bind, and fail arethe same
as the restrictions given in Figure 20.5 for code which uses the continuation-
passing macros. Where a choice expression occurs, it must be the last thing to
be evaluated. Thus if we want to make sequentia choices, in Common Lisp the

choices have to be nested:

> (choose-bind first-name ’(henry william)
(choose-bind last-name ’(james higgins)

(=values (list first-name last-name))))

(HENRY JAMES)

> (fail)

(HENRY HIGGINS)
> (fail)
(WILLIAM JAMES)



298 NONDETERMINISM

which will, as usual, result in depth-first search.

The operatorsdefined in Chapter 20 claimed theright to bethelast expressions
evaluated. Thisright is now preempted by the new layer of macros; an =values
expression should appear within a choose expression, and not vice versa. That
is,

(choose (=values 1) (=values 2))

will work, but
(=values (choose 1 2)) ; wrong

will not. (In the latter case, the expansion of the choose would be unable to
capture the instance of *cont* in the expansion of the=values.)

As long as we respect the restrictions outlined here and in Figure 20.5, non-
deterministic choice in Common Lisp will now work as it does in Scheme. Fig-
ure 22.7 shows a Common Lisp version of the nondeterministic tree search pro-
gram given in Figure 22.2. The Common Lisp descent is a direct tranglation,
though it comes out slightly longer and uglier.

We now have Common Lisp utilities which make it possible to do nondeter-
ministic search without explicit backtracking. Having taken trouble to write this
code, we can reap the benefits by writing in very few lines programswhich would
otherwise be large and messy. By building another layer of macros on top of
those presented here, we will be ableto write an ATN compiler in one page of code
(Chapter 23), and a sketch of Prolog in two (Chapter 24).

Common Lisp programs which use choose should be compiled with tail-
recursion optimization—not just to make them faster, but to avoid running out of
stack space. Programs which “return” values by calling continuation functions
never actually return until the final fail. Without the optimization of tail-calls,
the stack would just grow and grow.

225 Cuts

This section shows how to use cuts in Scheme programs which do nondetermin-
istic choice. Though the word cut comes from Prolog, the concept belongs to
nondeterminism generally. You might want to use cutsin any program that made
nondeterministic choices.

Cutsare easier to understand when considered independently of Prolog. Let's
imagine areal-life example. Suppose that the manufacturer of Chocoblob candies
decides to run a promation. A small number of boxes of Chocoblobs will also
contain tokens entitling the recipient to valuable prizes. To ensure fairness, no
two of the winning boxes are sent to the same city.



225 CuTS 299

> (=defun descent (nl1l n2)
(cond ((eq nl n2) (=values (list n2)))
((kids n1) (choose-bind n (kids nl)
(=bind (p) (descent n n2)
(=values (cons nl p)))))
(t (fail))))
DESCENT
> (defun kids (n)
(case n

(a ’(b c))

(b ’(d e))

(c 7(d £))

£ (g
KIDS
> (descent ’a ’g)
(ACF G
> (fail)
Q
> (descent ’a ’d)
(A B D)
> (fail)
(A CD)
> (fail)
Q
> (descent ’a ’h)
Q

Figure 22.7: Nondeterministic search in Common Lisp

After the promotion has begun, it emergesthat the tokens are small enough to
be swallowed by children. Hounded by visions of lawsuits, Chocoblob lawyers
begin afrantic search for all the special boxes. Within each city, thereare multiple
stores that sell Chocoblobs; within each store, there are multiple boxes. But the
lawyers may not have to open every box: oncethey find a coin-containing box in
agiven city, they do not have to search any of the other boxesin that city, because
each city has at most one special box. To realizethisisto do acut.

What's cut is a portion of the search tree. For Chocoblobs, the search tree
existsphysically: theroot nodeis at the company’shead office; the children of this
node are the cities where the special boxes were sent; the children of those nodes
are the stores in each city; and the children of each store represent the boxes in



300 NONDETERMINISM

(define (find-boxes)
(set! *paths* ())
(let ((city (choose ’(la ny bos))))
(newline)
(let* ((store (choose ’(1 2)))
(box (choose ’(1 2))))
(let ((triple (list city store box)))
(display triple)
(if (coin? triple)
(display ’c))
(fail)))))

(define (coin? x)
(member x ’((la 1 2) (ny 1 1) (bos 2 2))))

Figure 22.8: Exhaustive Chocoblob search.

that store. When the lawyers searching this tree find one of the boxes containing
a coin, they can prune off all the unexplored branches descending from the city
they’rein now.

Cuts actually take two operations: you can do a cut when you know that part
of the search tree is useless, but first you have to mark the tree at the point where
it can be cut. In the Chocoblob example, common sense tells us that the tree is
marked as we enter each city. It's hard to describe in abstract termswhat a Prolog
cut does, becausethe marksareimplicit. With an explicit mark operator, the effect
of acut will be more easily understood.

Figure 22.8 shows a program that nondeterministically searches a smaller
version of the Chocoblob tree. As each box is opened, the program displaysalist
of (city store box). If the box containsacoin, ac is printed after it:

> (find-boxes)

(LA 1 1)(LA 1 2)C(LA 2 1)(LA 2 2)

(NY 1 1)C(NY 1 2)(NY 2 1) (NY 2 2)
(BOS 1 1)(BOS 1 2)(B0OS 2 1) (BOS 2 2)C
Q

To implement the optimized search technique discovered by the Chocoblob
lawyers, we need two new operators: mark and cut. Figure 22.9 shows one way
to define them. Whereas nondeterminism itself can be understood independently
of any particular implementation, pruning the search tree is an optimization tech-
nique, and depends very much on how choose is implemented. The mark and



225 CuTS 301

(define (mark) (set! *paths* (cons fail *paths*)))

(define (cut)
(cond ((null? *pathsx))
((equal? (car *paths*) fail)
(set! xpaths* (cdr *paths*)))

(else
(set! xpaths* (cdr *paths*))
(cut))))

Figure 22.9: Marking and pruning search trees.

(define (find-boxes)
(set! *paths* ())
(let ((city (choose ’(la ny bos))))
(mark) ;
(newline)
(let* ((store (choose ’(1 2)))
(box (choose ’ (1 2))))
(let ((triple (list city store box)))
(display triple)
(if (coin? triple)
(begin (cut) (display ’c))) ;
(faill)))))

Figure 22.10: Pruned Chocoblob search.

cut defined in Figure 22.9 are suitable for use with the depth-first implementation
of choose (Figure 22.4).

Thegeneral ideaisfor mark to storemarkersin *paths*, thelist of unexplored
choice-points. Calling cut pops *pathsx* al the way down to the most recent
marker. What should we use as a marker? We could use e.g. the symbol m, but
that would require usto rewrite fail to ignore the ms when it encountered them.
Fortunately, since functions are data objects too, thereis at least one marker that
will allow usto use fail asis: the function fail itself. Thenif fail happens
on amarker, it will just call itself.

Figure 22.10 shows how these operators would be used to prune the search
treein the Chocoblob case. (Changed lines are indicated by semicolons.) We call
mark upon choosing a city. At this point, *paths* contains one continuation,



302 NONDETERMINISM

Figure 22.11: A directed graph with aloop.

representing the search of the remaining cities.

If wefind abox withacoininit, wecal cut, which sets *paths* back to the
valueit had at thetime of themark. The effects of the cut are not visible until the
next call to fail. But when it comes, after the display, the next fail sendsthe
search all the way up to the topmost choose, even if there would otherwise have
been live choice-pointslower in the search tree. The upshot is, as soon as we find
abox with acoin init, we resume the search at the next city:

> (find-boxes)
(LA 1 1)(@A 1 2)C

(NY 1 1)C
(BOS 1 1)(BOS 1 2)(BOS 2 1)(BOS 2 2)C
@

In this case, we open seven boxes instead of twelve.

22.6 TrueNondeterminism

A deterministic graph-searching program would have to take explicit steps to
avoid getting caught in a circular path. Figure 22.11 shows a directed graph
containing a loop. A program searching for a path from node a to node e risks
getting caught in the circular path (a, b, c). Unless adeterministic searcher used
randomization, breadth-first search, or checked explicitly for circular paths, the
search might never terminate. Theimplementation of path shownin Figure22.12
avoids circular paths by searching breadth-first.

In principle, nondeterminism should save us the trouble of even considering
circular paths. The depth-first implementation of choose and fail given in Sec-
tion 22.3 is vulnerable to the problem of circular paths, but if we were being
picky, we would expect nondeterministic choose to be able to select an object



22.6 TRUE NONDETERMINISM 303

(define (path nodel node2)
(bf-path node2 (list (list nodel))))

(define (bf-path dest queue)
(if (null? queue)
’Q
(let* ((path (car queue))
(node (car path)))
(if (eq? node dest)
(cdr (reverse path))
(bf-path dest
(append (cdr queue)
(map (lambda (n)
(cons n path))
(neighbors node))))))))

Figure 22.12: Deterministic search.

(define (path nodel node2)
(cond ((null? (neighbors nodel)) (fail))
((memq node2 (neighbors nodel)) (list node2))
(else (let ((n (true-choose (neighbors nodel))))
(cons n (path n node2))))))

Figure 22.13: Nondeterministic search.

which meets any computabl e specification, and this caseis no exception. Using a
correct choose, we should be able to write the shorter and clearer version of path
shown in Figure 22.13.

This section shows how to implement versions choose and fail which are safe
even from circular paths. Figure 22.14 contains a Scheme implementation of true
nondeterministic choose and fail. Programs which use these versions of choose
andfail should find solutionswhenever the equival ent nondeterministic algorithms
would, subject to hardware limitations.

Theimplementation of true-choose definedin Figure 22.14 works by treat-
ing the list of stored paths as a queue. Programs using true-choose will search
their state-space breadth-first. When the program reaches a choice-point, contin-
uations to follow each choice are appended to the end of the list of stored paths.



304 NONDETERMINISM

(define *paths* ())
(define failsym ’@)

(define (true-choose choices)
(call-with-current-continuation
(lambda (cc)
(set! *paths* (append *paths*
(map (lambda (choice)
(lambda () (cc choice)))
choices)))

(fail))))
(define fail)

(call-with-current-continuation
(lambda (cc)
(set! fail
(lambda ()
(if (null? *pathsx*)
(cc failsym)
(let ((p1 (car *pathsx*)))
(set! xpaths* (cdr *pathsx))
(P13

Figure 22.14: Correct choose in Scheme.

(Scheme's map returns the same values as Common Lisp's mapcar.) After this
thereisacall to fail, whichisunchanged.

This version of choose would alow the implementation of path defined in
Figure 22.13 to find a path—indeed, the shortest path—from a to e in the graph
displayed in Figure 22.11.

Although for the sake of completeness this chapter has provided correct ver-
sions of choose and fail, the original implementations will usually suffice. The
value of a programming language abstraction is not diminished just because its
implementation isn't formally correct. In some languages we act as if we had
access to al the integers, even though the largest one may be only 32767. As
long as we know how far we can push the illusion, there is little danger to it—
little enough, at least, to make the abstraction a bargain. The conciseness of
the programs presented in the next two chapters is due largely to their use of
nondeterministic choose and fail.





