
14

Anaphoric Macros

Chapter 9 treated variable capture exclusively as a problem—as something which
happens inadvertently, and which can only affect programs for the worse. This
chapter will show that variable capture can also be used constructively. There are
some useful macros which couldn’t be written without it.

It’s not uncommon in a Lisp program to want to test whether an expression
returns a non-nil value, and if so, to do something with the value. If the expression
is costly to evaluate, then one must normally do something like this:

(let ((result (big-long-calculation)))
(if result

(foo result)))

Wouldn’t it be easier if we could just say, as we would in English:

(if (big-long-calculation)
(foo it))

By taking advantage of variable capture, we can write a version of ifwhich works
just this way.

14.1 Anaphoric Variants

In natural language, an anaphor is an expression which refers back in the con-
versation. The most common anaphor in English is probably “it,” as in “Get the
wrench and put it on the table.” Anaphora are a great convenience in everyday

189



190 ANAPHORIC MACROS

language—imagine trying to get along without them—but they don’t appear much
in programming languages. For the most part, this is good. Anaphoric expressions
are often genuinely ambiguous, and present-day programming languages are not
designed to handle ambiguity.

However, it is possible to introduce a very limited form of anaphora into
Lisp programs without causing ambiguity. An anaphor, it turns out, is a lot like
a captured symbol. We can use anaphora in programs by designating certain
symbols to serve as pronouns, and then writing macros intentionally to capture
these symbols.

In the new version of if, the symbol it is the one we want to capture. The
anaphoric if, called aif for short, is defined as follows:

(defmacro aif (test-form then-form &optional else-form)
‘(let ((it ,test-form))

(if it ,then-form ,else-form)))

and used as in the previous example:

(aif (big-long-calculation)
(foo it))

When you use an aif, the symbol it is left bound to the result returned by the
test clause. In the macro call, it seems to be free, but in fact the expression (foo
it) will be inserted by expansion of the aif into a context in which the symbol
it is bound:

(let ((it (big-long-calculation)))
(if it (foo it) nil))

So a symbol which looks free in the source code is left bound by the macroex-
pansion. All the anaphoric macros in this chapter use some variation of the same
technique.

Figure 14.1 contains anaphoric variants of several Common Lisp operators.
After aif comes awhen, the obvious anaphoric variant of when:

(awhen (big-long-calculation)
(foo it)
(bar it))

Both aif and awhen are frequently useful, but awhile is probably unique
among the anaphoric macros in being more often needed than its regular cousin,
while (defined on page 91). Macros like while and awhile are typically used
in situations where a program needs to poll some outside source. And when you
are polling a source, unless you are simply waiting for it to change state, you will
usually want to do something with the object you find there:



14.1 ANAPHORIC VARIANTS 191

(defmacro aif (test-form then-form &optional else-form)
‘(let ((it ,test-form))

(if it ,then-form ,else-form)))

(defmacro awhen (test-form &body body)
‘(aif ,test-form

(progn ,@body)))

(defmacro awhile (expr &body body)
‘(do ((it ,expr ,expr))

((not it))
,@body))

(defmacro aand (&rest args)
(cond ((null args) t)

((null (cdr args)) (car args))
(t ‘(aif ,(car args) (aand ,@(cdr args))))))

(defmacro acond (&rest clauses)
(if (null clauses)

nil
(let ((cl1 (car clauses))

(sym (gensym)))
‘(let ((,sym ,(car cl1)))

(if ,sym
(let ((it ,sym)) ,@(cdr cl1))
(acond ,@(cdr clauses)))))))

Figure 14.1: Anaphoric variants of Common Lisp operators.

(awhile (poll *fridge*)
(eat it))

The definition of aand is a bit more complicated than the preceding ones.
It provides an anaphoric version of and; during the evaluation of each of its
arguments, it will be bound to the value returned by the previous argument. 1 In
practice, aand tends to be used in programs which make conditional queries, as
in:

1Although one tends to think of and and or together, there would be no point in writing an
anaphoric version of or. An argument in an or expression is evaluated only if the previous argument
evaluated to nil, so there would be nothing useful for an anaphor to refer to in an aor.



192 ANAPHORIC MACROS

(aand (owner x) (address it) (town it))

which returns the town (if there is one) of the address (if there is one) of the owner
(if there is one) of x. Without aand, this expression would have to be written

(let ((own (owner x)))
(if own

(let ((adr (address own)))
(if adr (town adr)))))

The definition of aand shows that the expansion will vary depending on the
number of arguments in the macro call. If there are no arguments, then aand, like
the regular and, should simply return t. Otherwise the expansion is generated
recursively, each step yielding one layer in a chain of nested aifs:

(aif 〈first argument〉
〈expansion for rest of arguments〉)

The expansion of an aandmust terminate when there is one argument left, instead
of working its way down to nil like most recursive functions. If the recursion
continued until no conjuncts remained, the expansion would always be of the
form:

(aif 〈c1〉
...
(aif 〈cn〉

t). . .)

Such an expression would always returnt or nil, and the example above wouldn’t
work as intended.

Section 10.4 warned that if a macro always yielded an expansion containing
a call to itself, the expansion would never terminate. Though recursive, aand is
safe because in the base case its expansion doesn’t refer to aand.

The last example, acond, is meant for those cases where the remainder of a
cond clause wants to use the value returned by the test expression. (This situation
arises so often that some Scheme implementations provide a way to use the value
returned by the test expression in a cond clause.)

In the expansion of an acond clause, the result of the test expression will
initially be kept in a gensymed variable, in order that the symbol itmay be bound
only within the remainder of the clause. When macros create bindings, they should
always do so over the narrowest possible scope. Here, if we dispensed with the



14.1 ANAPHORIC VARIANTS 193

(defmacro alambda (parms &body body)
‘(labels ((self ,parms ,@body))

#’self))

(defmacro ablock (tag &rest args)
‘(block ,tag

,(funcall (alambda (args)
(case (length args)
(0 nil)
(1 (car args))
(t ‘(let ((it ,(car args)))

,(self (cdr args))))))
args)))

Figure 14.2: More anaphoric variants.

gensym and instead bound it immediately to the result of the test expression, as
in:

(defmacro acond (&rest clauses) ; wrong
(if (null clauses)

nil
(let ((cl1 (car clauses)))
‘(let ((it ,(car cl1)))

(if it
(progn ,@(cdr cl1))
(acond ,@(cdr clauses)))))))

then that binding of it would also have within its scope the following test expres-
sion.

Figure 14.2 contains some more complicated anaphoric variants. The macro
alambda is for referring literally to recursive functions. When does one want to
refer literally to a recursive function? We can refer literally to a function by using
a sharp-quoted lambda-expression:

#’(lambda (x) (* x 2))

But as Chapter 2 explained, you can’t express a recursive function with a simple
lambda-expression. Instead you have to define a local function with labels. The
following function (reproduced from page 22)



194 ANAPHORIC MACROS

(defun count-instances (obj lists)
(labels ((instances-in (list)

(if list
(+ (if (eq (car list) obj) 1 0)

(instances-in (cdr list)))
0)))

(mapcar #’instances-in lists)))

takes an object and a list, and returns a list of the number of occurrences of the
object in each element:

> (count-instances ’a ’((a b c) (d a r p a) (d a r) (a a)))
(1 2 1 2)

With anaphora we can make what amounts to a literal recursive function. The
alambda macro uses labels to create one, and thus can be used to express, for
example, the factorial function:

(alambda (x) (if (= x 0) 1 (* x (self (1- x)))))

Using alambda we can define an equivalent version of count-instances as
follows:

(defun count-instances (obj lists)
(mapcar (alambda (list)

(if list
(+ (if (eq (car list) obj) 1 0)

(self (cdr list)))
0))

lists))

Unlike the other macros in Figures 14.1 and 14.2, which all capture it, alambda
captures self. An instance of alambda expands into a labels expression in
which self is bound to the function being defined. As well as being smaller,
alambda expressions look like familiar lambda expressions, making code which
uses them easier to read.

The new macro is used in the definition of ablock, an anaphoric version of the
built-in block special form. In a block, the arguments are evaluated left-to-right.
The same happens in an ablock, but within each the variable it will be bound to
the value of the previous expression.

This macro should be used with discretion. Though convenient at times,
ablockwould tend to beat what could be nice functional programs into imperative
form. The following is, unfortunately, a characteristically ugly example:



14.2 FAILURE 195

> (ablock north-pole
(princ "ho ")
(princ it)
(princ it)
(return-from north-pole))

ho ho ho
NIL

Whenever a macro which does intentional variable capture is exported to
another package, it is necessary also to export the symbol being captured. For
example, wherever aif is exported, it should be as well. Otherwise the itwhich
appears in the macro definition would be a different symbol from an it used in a
macro call.

14.2 Failure

In Common Lisp the symbol nil has at least three different jobs. It is first of all
the empty list, so that

> (cdr ’(a))
NIL

As well as the empty list, nil is used to represent falsity, as in

> (= 1 0)
NIL

And finally, functions return nil to indicate failure. For example, the job of the
built-in find-if is to return the first element of a list which satisfies some test.
If no such element is found, find-if returns nil:

> (find-if #’oddp ’(2 4 6))
NIL

Unfortunately, we can’t tell this case from the one in which find-if succeeds,
but succeeds in finding nil:

> (find-if #’null ’(2 nil 6))
NIL

In practice, it doesn’t cause too much trouble to use nil to represent both falsity
and the empty list. In fact, it can be rather convenient. However, it is a pain to
have nil represent failure as well, because it means that the result returned by a
function like find-if can be ambiguous.



196 ANAPHORIC MACROS

The problem of distinguishing between failure and a nil return value arises
with any function which looks things up. Common Lisp offers no less than three
solutions to the problem. The most common approach, before multiple return
values, was to return gratuitous list structure. There is no trouble distinguishing
failure with assoc, for example; when successful it returns the whole pair in
question:

> (setq synonyms ’((yes . t) (no . nil)))
((YES . T) (NO))
> (assoc ’no synonyms)
(NO)

Following this approach, if we were worried about ambiguity with find-if, we
would use member-if, which instead of just returning the element satisfying the
test, returns the whole cdr which begins with it:

> (member-if #’null ’(2 nil 6))
(NIL 6)

Since the advent of multiple return values, there has been another solution to
this problem: use one value for data and a second to indicate success or failure.
The built-in gethash works this way. It always returns two values, the second
indicating whether anything was found:

> (setf edible (make-hash-table)
(gethash ’olive-oil edible) t
(gethash ’motor-oil edible) nil)

NIL
> (gethash ’motor-oil edible)
NIL
T

So if you want to detect all three possible cases, you can use an idiom like the
following:

(defun edible? (x)
(multiple-value-bind (val found?) (gethash x edible)
(if found?

(if val ’yes ’no)
’maybe)))

thereby distinguishing falsity from failure:

> (mapcar #’edible? ’(motor-oil olive-oil iguana))
(NO YES MAYBE)



14.3 FAILURE 197

Common Lisp supports yet a third way of indicating failure: to have the
access function take as an argument a special object, presumably a gensym, to
be returned in case of failure. This approach is used with get, which takes an
optional argument saying what to return if the specified property isn’t found:

> (get ’life ’meaning (gensym))
#:G618

Where multiple return values are possible, the approach used by gethash
is the cleanest. We don’t want to have to pass additional arguments to every
access function, as we do with get. And between the other two alternatives, using
multiple values is the more general; find-if could be written to return two values,
but gethash could not, without consing, be written to return disambiguating list
structure. Thus in writing new functions for lookup, or for other tasks where
failure is possible, it will usually be better to follow the model of gethash.

The idiom found in edible? is just the sort of bookkeeping which is well
hidden by a macro. For access functions like gethashwe will want a new version
of aifwhich, instead of binding and testing the same value, binds the first but also
tests the second. The new version of aif, called aif2, is shown in Figure 14.3.
Using it we could write edible? as:

(defun edible? (x)
(aif2 (gethash x edible)

(if it ’yes ’no)
’maybe))

Figure 14.3 also contains similarly altered versions of awhen, awhile, and
acond. For an example of the use of acond2, see the definition of match on
page 239. By using this macro we are able to express in the form of a cond a
function that would otherwise be much longer and less symmetrical.

The built-in read indicates failure in the same way as get. It takes optional
arguments saying whether or not to generate an error in case of eof, and if not,
what value to return. Figure 14.4 contains an alternative version of read which
uses a second return value to indicate failure: read2 returns two values, the input
expression and a flag which is nil upon eof. It calls read with a gensym to
be returned in case of eof, but to save the trouble of building the gensym each
time read2 is called, the function is defined as a closure with a private copy of a
gensym made at compile time.

Figure 14.4 also contains a convenient macro to iterate over the expressions in
a file, written using awhile2 and read2. Using do-filewe could, for example,
write a version of load as:

(defun our-load (filename)
(do-file filename (eval it)))



198 ANAPHORIC MACROS

(defmacro aif2 (test &optional then else)
(let ((win (gensym)))
‘(multiple-value-bind (it ,win) ,test

(if (or it ,win) ,then ,else))))

(defmacro awhen2 (test &body body)
‘(aif2 ,test

(progn ,@body)))

(defmacro awhile2 (test &body body)
(let ((flag (gensym)))
‘(let ((,flag t))

(while ,flag
(aif2 ,test

(progn ,@body)
(setq ,flag nil))))))

(defmacro acond2 (&rest clauses)
(if (null clauses)

nil
(let ((cl1 (car clauses))

(val (gensym))
(win (gensym)))

‘(multiple-value-bind (,val ,win) ,(car cl1)
(if (or ,val ,win)

(let ((it ,val)) ,@(cdr cl1))
(acond2 ,@(cdr clauses)))))))

Figure 14.3: Multiple-value anaphoric macros.

14.3 Referential Transparency

Anaphoric macros are sometimes said to violate referential transparency, which
Gelernter and Jagannathan define as follows:

A language is referentially transparent if (a) every subexpression
can be replaced by any other that’s equal to it in value and (b) all◦
occurrences of an expression within a given context yield the same
value.

Note that this standard applies to languages,not to programs. No language with
assignment is referentially transparent. The first and the last x in this expression



14.3 REFERENTIAL TRANSPARENCY 199

(let ((g (gensym)))
(defun read2 (&optional (str *standard-input*))
(let ((val (read str nil g)))
(unless (equal val g) (values val t)))))

(defmacro do-file (filename &body body)
(let ((str (gensym)))
‘(with-open-file (,str ,filename)

(awhile2 (read2 ,str)
,@body))))

Figure 14.4: File utilities.

(list x
(setq x (not x))
x)

yield different values, because a setq intervenes. Admittedly, this is ugly code.
The fact that it is even possible means that Lisp is not referentially transparent.

Norvig mentions that it would be convenient to redefine if as: ◦

(defmacro if (test then &optional else)
‘(let ((that ,test))

(if that ,then ,else)))

but rejects this macro on the grounds that it violates referential transparency.
However, the problem here comes from redefining built-in operators, not from

using anaphora. Clause (b) of the definition above requires that an expression
always return the same value “within a given context.” It is no problem if, within
this let expression,

(let ((that ’which))
...)

the symbol that denotes a new variable, because let is advertised to create a
new context.

The trouble with the macro above is that it redefines if, which is not supposed
to create a new context. This problem goes away if we give anaphoric macros
distinct names. (As of CLTL2, it is illegal to redefine if anyway.) As long as it is
part of the definition of aif that it establishes a new context in which it is a new
variable, such a macro does not violate referential transparency.



200 ANAPHORIC MACROS

Now, aif does violate another convention, which has nothing to do with
referential transparency: that newly established variables somehow be indicated
in the source code. The let expression above clearly indicates that that will
refer to a new variable. It could be argued that the binding of it within an aif is
not so clear. However, this is not a very strong argument: aif only creates one
variable, and the creation of that variable is the only reason to use it.

Common Lisp itself does not treat this convention as inviolable. The binding
of the CLOS function call-next-methoddepends on the context in just the same
way that the binding of the symbol it does within the body of an aif. (For a
suggestion of how call-next-method would be implemented, see the macro
defmeth on page 358.) In any case, such conventions are only supposed to be
a means to an end: programs which are easy to read. And anaphora do make
programs easier to read, just as they make English easier to read.




