
9

Variable Capture

Macros are vulnerable to a problem called variable capture. Variable capture
occurs when macroexpansion causes a name clash: when some symbol ends up
referring to a variable from another context. Inadvertent variable capture can
cause extremely subtle bugs. This chapter is about how to foresee and avoid
them. However, intentional variable capture is a useful programming technique,
and Chapter 14 is full of macros which rely on it.

9.1 Macro Argument Capture

A macro vulnerable to unintended variable capture is a macro with a bug. To avoid
writing such macros, we must know precisely when capture can occur. Instances
of variable capture can be traced to one of two situations: macro argument capture
and free symbol capture. In argument capture, a symbol passed as an argument in
the macro call inadvertently refers to a variable established by the macro expansion
itself. Consider the following definition of the macro for, which iterates over a
body of expressions like a Pascal for loop:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

This macro looks correct at first sight. It even seems to work fine:

118



9.2 FREE SYMBOL CAPTURE 119

> (for (x 1 5)
(princ x))

12345
NIL

Indeed, the error is so subtle that we might use this version of the macro hundreds
of times and have it always work perfectly. Not if we call it this way, though:

(for (limit 1 5)
(princ limit))

We might expect this expression to have the same effect as the one before. But it
doesn’t print anything; it generates an error. To see why, we look at its expansion:

(do ((limit 1 (1+ limit))
(limit 5))

((> limit limit))
(princ limit))

Now it’s obvious what goes wrong. There is a name clash between a symbol
local to the macro expansion and a symbol passed as an argument to the macro.
The macroexpansion captures limit. It ends up occurring twice in the same do,
which is illegal.

Errors caused by variable capture are rare, but what they lack in frequency they
make up in viciousness. This capture was comparatively mild—here, at least, we
got an error. More often than not, a capturing macro would simply yield incorrect
results with no indication that anything was wrong. In this case,

> (let ((limit 5))
(for (i 1 10)

(when (> i limit)
(princ i))))

NIL

the resulting code quietly does nothing.

9.2 Free Symbol Capture

Less frequently, the macro definition itself contains a symbol which inadvertently
refers to a binding in the environment where the macro is expanded. Suppose
some program, instead of printing warnings to the user as they arise, wants to store
the warnings in a list, to be examined later. One person writes a macro gripe,
which takes a warning message and adds it to a global list, w:



120 VARIABLE CAPTURE

(defvar w nil)

(defmacro gripe (warning) ; wrong
‘(progn (setq w (nconc w (list ,warning)))

nil))

Someone else then wants to write a function sample-ratio, to return the ratio
of the lengths of two lists. If either of the lists has less than two elements, the
function is to return nil instead, also issuing a warning that it was called on a
statistically insignificant case. (Actual warnings could be more informative, but
their content isn’t relevant to this example.)

(defun sample-ratio (v w)
(let ((vn (length v)) (wn (length w)))
(if (or (< vn 2) (< wn 2))

(gripe "sample < 2")
(/ vn wn))))

If sample-ratio is called with w = (b), then it will want to warn that one of its
arguments, with only one element, is statistically insignificant. But when the call
to gripe is expanded, it will be as if sample-ratio had been defined:

(defun sample-ratio (v w)
(let ((vn (length v)) (wn (length w)))
(if (or (< vn 2) (< wn 2))

(progn (setq w (nconc w (list "sample < 2")))
nil)

(/ vn wn))))

The problem here is that gripe is used in a context where w has its own local
binding. The warning, instead of being saved in the global warning list, will be
nconced onto the end of one of the parameters of sample-ratio. Not only is
the warning lost, but the list (b), which is probably used as data elsewhere in the
program, will have an extraneous string appended to it:

> (let ((lst ’(b)))
(sample-ratio nil lst)
lst)

(B "sample < 2")
> w
NIL



9.3 WHEN CAPTURE OCCURS 121

9.3 When Capture Occurs

It’s asking a lot of the macro writer to be able to look at a macro definition and
foresee all the possible problems arising from these two types of capture. Variable
capture is a subtle matter, and it takes some experience to anticipate all the ways
a capturable symbol could wreak mischief in a program. Fortunately, you can
detect and eliminate capturable symbols in your macro definitions without having
to think about how their capture could send your program awry. This section
provides a straightforward rule for detecting capturable symbols. The remaining
sections of this chapter explain techniques for eliminating them.

The rule for defining a capturable variable depends on some subordinate
concepts, which must be defined first:

Free: A symbol s occurs free in an expression when it is used as a variable in that
expression, but the expression does not create a binding for it.

In the following expression,

(let ((x y) (z 10))
(list w x z))

w, x andz all occur free within the list expression, which establishes no bindings.
However, the enclosing let expression establishes bindings for x and z, so within
the let as a whole, only y and w occur free. Note that in

(let ((x x))
x)

the second instance of x is free—it’s not within the scope of the new binding being
established for x.

Skeleton: The skeleton of a macro expansion is the whole expansion, minus
anything which was part of an argument in the macro call.

If foo is defined:

(defmacro foo (x y)
‘(/ (+ ,x 1) ,y))

and called thus:

(foo (- 5 2) 6)

then it yields the macro expansion:



122 VARIABLE CAPTURE

(/ (+ (- 5 2) 1) 6)

The skeleton of this expansion is the above expression with holes where the
parameters x and y got inserted:

(/ (+ 1) )

With these two concepts defined, it’s possible to state a concise rule for
detecting capturable symbols:

Capturable: A symbol is capturable in some macro expansion if (a) it occurs
free in the skeleton of the macro expansion, or (b) it is bound by a part of
the skeleton in which arguments passed to the macro are either bound or
evaluated.

Some examples will show the implications of this rule. In the simplest case:

(defmacro cap1 ()
’(+ x 1))

x is capturable because it will occur free in the skeleton. That’s what caused the
bug in gripe. In this macro:

(defmacro cap2 (var)
‘(let ((x ...)

(,var ...))
...))

x is capturable because it is bound in an expression where an argument to the
macro call will also be bound. (That’s what went wrong in for.) Likewise for the
following two macros

(defmacro cap3 (var)
‘(let ((x ...))

(let ((,var ...))
...)))

(defmacro cap4 (var)
‘(let ((,var ...))

(let ((x ...))
...)))

in both of which x is capturable. However, if there is no context in which the
binding of x and the variable passed as an argument will both be visible, as in



9.3 WHEN CAPTURE OCCURS 123

(defmacro safe1 (var)
‘(progn (let ((x 1))

(print x))
(let ((,var 1))
(print ,var))))

then x won’t be capturable. Not all variables bound by the skeleton are at risk.
However, if arguments to the macro call are evaluated within a binding established
by the skeleton,

(defmacro cap5 (&body body)
‘(let ((x ...))

,@body))

then variables so bound are at risk of capture: in cap5, x is capturable. In this
case, though,

(defmacro safe2 (expr)
‘(let ((x ,expr))

(cons x 1)))

x is not capturable, because when the argument passed to expr is evaluated, the
new binding of x won’t be visible. Note also that it’s only the binding of skeletal
variables we have to worry about. In this macro

(defmacro safe3 (var &body body)
‘(let ((,var ...))

,@body))

no symbol is at risk of inadvertent capture (assuming that the user expects that the
first argument will be bound).

Now let’s look at the original definition of for in light of the new rule for
identifying capturable symbols:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

It turns out now that this definition of for is vulnerable to capture in two ways:
limit could be passed as the first argument to for, as in the original example:

(for (limit 1 5)
(princ limit))



124 VARIABLE CAPTURE

but it’s just as dangerous if limit occurs in the body of the loop:

(let ((limit 0))
(for (x 1 10)
(incf limit x))

limit)

Someone using for in this way would be expecting his own binding of limit to
be the one incremented in the loop, and the expression as a whole to return 55; in
fact, only the binding of limit generated by the skeleton of the expansion will
be incremented:

(do ((x 1 (1+ x))
(limit 10))

((> x limit))
(incf limit x))

and since that’s the one which controls iteration, the loop won’t even terminate.
The rules presented in this section should be used with the reservation that they

are intended only as a guide. They are not even formally stated, let alone formally
correct. The problem of capture is a vaguely defined one, since it depends on
expectations. For example, in an expression like

(let ((x 1)) (list x))

we don’t regard it as an error that when (list x) is evaluated, x will refer to a
new variable. That’s what let is supposed to do. The rules for detecting capture
are also imprecise. You could write macros which passed these tests, and which
still would be vulnerable to unintended capture. For example,

(defmacro pathological (&body body) ; wrong
(let* ((syms (remove-if (complement #’symbolp)

(flatten body)))
(var (nth (random (length syms))

syms)))
‘(let ((,var 99))

,@body)))

When this macro is called, the expressions in the body will be evaluated as if in
a progn—but one random variable within the body may have a different value.
This is clearly capture, but it passes our tests, because the variable does not occur
in the skeleton. In practice, though, the rules will work nearly all the time: one
rarely (if ever) wants to write a macro like the example above.



9.5 AVOIDING CAPTURE WITH BETTER NAMES 125

Vulnerable to capture:

(defmacro before (x y seq)
‘(let ((seq ,seq))

(< (position ,x seq)
(position ,y seq))))

A correct version:

(defmacro before (x y seq)
‘(let ((xval ,x) (yval ,y) (seq ,seq))

(< (position xval seq)
(position yval seq))))

Figure 9.1: Avoiding capture with let.

9.4 Avoiding Capture with Better Names

The first two sections divided instances of variable capture into two types: ar-
gument capture, where a symbol used in an argument is caught by a binding
established by the macro skeleton, and free symbol capture, where a free symbol
in a macroexpansion is caught by a binding in force where the macro is ex-
panded. The latter cases are usually dealt with simply by giving global variables
distinguished names. In Common Lisp, it is traditional to give global variables
names which begin and end with asterisks. The variable defining the current
package is called *package*, for example. (Such a name may be pronounced
“star-package-star” to emphasize that it is not an ordinary variable.)

So really it was the responsibility of the author of gripe to store warnings
in a variable called something like *warnings*, rather than just w. If the author
of sample-ratio had used *warnings* as a parameter, then he would deserve
every bug he got, but he can’t be blamed for thinking that it would be safe to call
a parameter w.

9.5 Avoiding Capture by Prior Evaluation

Sometimes argument capture can be cured simply by evaluating the endan-
gered arguments outside of any bindings created by the macroexpansion. The
simplest cases can be handled by beginning the macro with a let expression.
Figure 9.1 contains two versions of the macro before, which takes two objects
and a sequence, and returns true iff the first object occurs before the second in the



126 VARIABLE CAPTURE

sequence.1 The first definition is incorrect. Its initial let ensures that the form
passed as seq is only evaluated once, but it is not sufficient to avoid the following
problem:

> (before (progn (setq seq ’(b a)) ’a)
’b
’(a b))

NIL

This amounts to asking “Is a before b in (a b)?” If before were correct, it
would return true. Macroexpansion shows what really happens: the evaluation of
the first argument to < rearranges the list to be searched in the second.

(let ((seq ’(a b)))
(< (position (progn (setq seq ’(b a)) ’a)

seq)
(position ’b seq)))

To avoid this problem, it will suffice to evaluate all the arguments first in one big
let. The second definition in Figure 9.1 is thus safe from capture.

Unfortunately, the let technique works only in a narrow range of cases:
macros where

1. all the arguments at risk of capture are evaluated exactly once, and

2. none of the arguments need to be evaluated in the scope of bindings estab-
lished by the macro skeleton.

This rules out a great many macros. The proposed for macro violates both
conditions. However, we can use a variation of this scheme to make macros like
for safe from capture: to wrap its body forms within a lambda-expressionoutside
of any locally created bindings.

Some macros, including those for iteration, yield expansions where expres-
sions appearing in the macro call will be evaluated within newly established
bindings. In the definition of for, for example, the body of the loop must be
evaluated within a do created by the macro. Variables occurring in the body of
the loop are thus vulnerable to capture by bindings established by the do. We
can protect variables in the body from such capture by wrapping the body in a
closure, and, within the loop, instead of inserting the expressions themselves,
simply funcalling the closure.

Figure 9.2 shows a version of forwhich uses this technique. Since the closure◦
1This macro is used only as an example. Really it should neither be implemented as a macro, nor

use the inefficient algorithm that it does. For a proper definition, see page 50.



9.6 AVOIDING CAPTURE BY PRIOR EVALUATION 127

Vulnerable to capture:

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

A correct version:

(defmacro for ((var start stop) &body body)
‘(do ((b #’(lambda (,var) ,@body))

(count ,start (1+ count))
(limit ,stop))

((> count limit))
(funcall b count)))

Figure 9.2: Avoiding capture with a closure.

is the first thing made by the expansion of a for, free symbols occurring in the
body will all refer to variables in the environment of the macro call. Now the do
communicates with its body through the parameters of the closure. All the closure
needs to know from the do is the number of the current iteration, so it has only
one parameter, the symbol specified as the index variable in the macro call.

The technique of wrapping expressions in lambdas is not a universal remedy.
You can use it to protect a body of code, but closures won’t be any use when, for
example, there is a risk of the same variable being bound twice by the same let or
do (as in our original broken for). Fortunately, in this case, by rewriting for to
package its body in a closure, we also eliminated the need for the do to establish
bindings for the var argument. The var argument of the old for became the
parameter of the closure and could be replaced in the do by an actual symbol,
count. So the new definition of for is completely immune from capture, as the
test in Section 9.3 will show.

The disadvantage of using closures is that they might be less efficient. We
could be introducing another function call. Potentially worse, if the compiler
doesn’t give the closure dynamic extent, space for it will have to be allocated in
the heap at runtime.



128 VARIABLE CAPTURE

9.6 Avoiding Capture with Gensyms

There is one certain way to avoid macro argument capture: replacing capturable
symbols with gensyms. In the original version of for, problems arise when two
symbols inadvertently have the same name. If we want to avoid the possibility that
a macro skeleton will contain a symbol also used by the calling code, we might
hope to get away with using only strangely named symbols in macro definitions:

(defmacro for ((var start stop) &body body) ; wrong
‘(do ((,var ,start (1+ ,var))

(xsf2jsh ,stop))
((> ,var xsf2jsh))

,@body))

but this is no solution. It doesn’t eliminate the bug, just makes it less likely to
show. And not so very less likely at that—it’s still possible to imagine conflicts
arising in nested instances of the same macro.

We need some way to ensure that a symbol is unique. The Common Lisp
function gensym exists just for this purpose. It returns a symbol, called a gensym,◦
which is guaranteed not to be eq to any symbol either typed in or constructed by
a program.

How can Lisp promise this? In Common Lisp, each package keeps a list of
all the symbols known in that package. (For an introduction to packages, see
page 381.) A symbol which is on the list is said to be interned in the package.
Each call to gensym returns a unique, uninterned symbol. And since every symbol
seen by read gets interned, no one could type anything identical to a gensym.
Thus, if you begin the expression

(eq (gensym) ...

there is no way to complete it that will cause it to return true.
Askinggensym to make you a symbol is like taking the approach of choosing a

strangely named symbol one step further—gensymwill give you a symbol whose
name isn’t even in the phone book. When Lisp has to display a gensym,

> (gensym)
#:G47

what it prints is really just Lisp’s equivalent of “John Doe,” an arbitrary name
made up for something whose name is irrelevant. And to be sure that we don’t
have any illusions about this, gensyms are displayed preceded by a sharp-colon,
a special read-macro which exists just to cause an error if we ever try to read the
gensym in again.



9.7 AVOIDING CAPTURE WITH GENSYMS 129

Vulnerable to capture:

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

A correct version:

(defmacro for ((var start stop) &body body)
(let ((gstop (gensym)))
‘(do ((,var ,start (1+ ,var))

(,gstop ,stop))
((> ,var ,gstop))

,@body)))

Figure 9.3: Avoiding capture with gensym.

In CLTL2 Common Lisp, the number in a gensym’s printed representation
comes from *gensym-counter*, a global variable always bound to an integer.
By resetting this counter we can cause two gensyms to print the same

> (setq x (gensym))
#:G48
> (setq *gensym-counter* 48 y (gensym))
#:G48
> (eq x y)
NIL

but they won’t be identical.
Figure 9.3 contains a correct definition of for using gensyms. Now there is no

limit to clash with symbols in forms passed to the macro. It has been replaced
by a symbol gensymed on the spot. In each expansion of the macro, the place of
limit will be taken by a unique symbol created at expansion-time.

The correct definition of for is a complicated one to produce on the first try.
Finished code, like a finished theorem, often covers up a lot of trial and error. So
don’t worry if you have to write several versions of a macro. To begin writing
macros like for, you may want to write the first version without thinking about
variable capture, and then to go back and make gensyms for symbols which could
be involved in captures.



130 VARIABLE CAPTURE

9.7 Avoiding Capture with Packages

To some extent, it is possible to avoid capture by defining macros in their own
package. If you create a macros package and define for there, you can even use
the definition given first

(defmacro for ((var start stop) &body body)
‘(do ((,var ,start (1+ ,var))

(limit ,stop))
((> ,var limit))

,@body))

and call it safely from any other package. If you call for from another package,
say mycode, then even if you do use limit as the first argument, it will be
mycode::limit—a distinct symbol from macros::limit, which occurs in the
macro skeleton.

However, packages do not provide a very general solution to the problem of
capture. In the first place, macros are an integral part of some programs, and it
would be inconvenient to have to separate them in their own package. Second,
this approach offers no protection against capture by other code in the macros
package.

9.8 Capture in Other Name-Spaces

The previous sections have spoken of capture as if it were a problem which afflicted
variables exclusively. Although most capture is variable capture, the problem can
arise in Common Lisp’s other name-spaces as well.

Functions may also be locally bound, and function bindings are equally liable
to inadvertent capture. For example:

> (defun fn (x) (+ x 1))
FN
> (defmacro mac (x) ‘(fn ,x))
MAC
> (mac 10)
11
> (labels ((fn (y) (- y 1)))

(mac 10))
9

As predicted by the capture rule, the fn which occurs free in the skeleton of mac
is at risk of capture. When fn is locally rebound, mac returns a different value
than it does generally.



9.9 CAPTURE IN OTHER NAME-SPACES 131

What to do about this case? When the symbol at risk of capture is the name of
a built-in function or macro, then it’s reasonable to do nothing. In CLTL2 (p. 260) ◦
if the name of anything built-in is given a local function or macro binding, “the
consequences are undefined." So it wouldn’t matter what your macro did—anyone
who rebinds built-in functions is going to have problems with more than just your
macros.

Otherwise, you can protect function names against macro argument capture
the same way you would protect variable names: by using gensyms as names
for any functions given local definitions by the macro skeleton. Avoiding free
symbol capture, as in the case above, is a bit more difficult. The way to protect
variables against free symbol capture was to give them distinctly global names:
e.g. *warnings* instead of w. This solution is not practical for functions, because
there is no convention for distinguishing the names of global functions—most
functions are global. If you’re concerned about a macro being called in an
environment where a function it needs might be locally redefined, the best solution
is probably to put your code in a distinct package.

Block-names are also liable to capture, as are the tags used by go and throw.
When your macros need such symbols,you should use gensyms,as in the definition
of our-do on page 98.

Remember also that operators like do are implicitly enclosed in a block named
nil. Thus a return or return-from nil within a do returns from the do, not
the containing expression:

> (block nil
(list ’a

(do ((x 1 (1+ x)))
(nil)

(if (> x 5)
(return-from nil x)
(princ x)))))

12345
(A 6)

If do didn’t create a block named nil, this example would have returned just 6,
rather than (A 6).

The implicit block in do is not a problem, because do is advertised to behave
this way. However, you should realize that if you write macros which expand into
dos, they will capture the block name nil. In a macro like for, a return or
return-from nil will return from the for expression, not the enclosing block.



132 VARIABLE CAPTURE

9.9 Why Bother?

Some of the preceding examples are pretty pathological. Looking at them, one
might be tempted to say “variable capture is so unlikely—why even worry about
it?” There are two ways to answer this question. One is with another question:
why write programs with small bugs when you could write programs with no
bugs?

The longer answer is to point out that in real applications it’s dangerous to
assume anything about the way your code will be used. Any Lisp program has
what is now called an “open architecture.” If you’re writing code other people
will use, they may use it in ways you’d never anticipate. And it’s not just people
you have to worry about. Programs write programs too. It may be that no human
would write code like

(before (progn (setq seq ’(b a)) ’a)
’b
’(a b))

but code generated by programs often looks like this. Even if individual macros
generate simple and reasonable-looking expansions, once you begin to nest macro
calls, the expansions can become large programs which look like nothing any
human would write. Under such circumstances, it is worth defending against
cases, however contrived, which might make your macros expand incorrectly.

In the end, avoiding variable capture is not very difficult anyway. It soon be-
comes second-nature. The classic Common Lisp defmacro is like a cook’s knife:
an elegant idea which seems dangerous, but which experts use with confidence.




