
1

Rule-based

Programming, Logic

Programming

and Prolog

The Paradigm

• An important programming paradigm is to

express a program as a set of rules

• The rules are independent and often

unordered

• CFGs can be thought of as a rule based

system

• We’ll take a brief look at a particular sub-

paradigm, Logic Programming

• And at Prolog, the most successful of the

logic programming languages

History

• Logic Programming has roots going back to early

AI researchers like John McCarthy in the 50s & 60s

• Alain Colmerauer (France) designed Prolog as the

first LP language in the early 1970s

• Bob Kowalski and colleagues in the UK evolved the

language to its current form in the late 70s

• It’s been widely used for many AI systems, but also

for systems that need a fast, efficient and clean rule

based engine

• The prolog model has also influenced the database

community – see datalog

Computation as Deduction

• Logic programming offers a slightly different paradigm for

computation: computation is logical deduction

• It uses the language of logic to express data and programs.

Forall X, Y: X is the father of Y if X is a parent of Y and X is male

• Current logic programming languages use first order logic

(FOL) which is often referred to as first order predicate

calculus (FOPC).

• The first order refers to the constraint that we can quantify

(i.e. generalize) over objects, but not over functions or

relations. We can express "All elephants are mammals” but

not

"for every continuous function f, if n<m and f(n)<0 and

f(m)>0 then there exists an x such that n<x<m and

f(x)=0"

Theorem Proving

• Logic Programming uses the notion of an automatic

theorem prover as an interpreter.

• The theorem prover derives a desired solution from

an initial set of axioms.

• The proof must be a "constructive" one so that more

than a true/false answer can be obtained

• E.G. The answer to
exists x such that x = sqrt(16)

• should be
x = 4 or x = -4

• rather than
true

Non-procedural Programming
• Logic Programming languages are non-procedural

programming languages

• A non-procedural language is one in which we

specify what needs to be computed, but not how it

is to be done

• That is, one specifies:

– the set of objects involved in the computation

– the relationships which hold between them

– the constraints which must hold for the problem to be

solved

• and leaves it up the the language interpreter or

compiler to decide how to satisfy the constraints

http://en.wikipedia.org/wiki/Logic_programming
http://en.wikipedia.org/wiki/Alain_Colmerauer
http://en.wikipedia.org/wiki/Prolog
http://en.wikipedia.org/wiki/Robert_Kowalski
http://en.wikipedia.org/wiki/Datalog

2

A Declarative Example

• Here’s a simple way to specify what

has to be true if X is the smallest number in a

list of numbers L

1. X has to be a member of the list L

2. There can’t be list member X2 such that X2<X

• We need to say how we determine that some

X is a member of a list

1. No X is a member of the empty list

2. X is a member of list L if it is equal to L’s head

3. X is a member of list L if it is a member of L’s

tail.

A Simple Prolog Model

Think of Prolog as a system which has a database

composed of two components:

•facts: statements about true relations which hold between

particular objects in the world. For example:

parent(adam, able). % adam is a parent of able

parent(eve, able). % eve is a parent of able

male(adam). % adam is male.

•rules: statements about relations between objects in the

world which use variables to express generalizations

% X is the father of Y if X is a parent of Y and X is male

father(X,Y) :- parent(X, Y), male(X).

% X is a sibling of Y if X and Y share a parent

sibling(X,Y) :- parent(P,X), parent(P,Y)

(note: ‘%’ is Prolog’s comment character)

Nomenclature and Syntax

• A prolog rule is called a clause

• A clause has a head, a neck and a body:

father(X,Y) :- parent(X,Y) , male(X) .

head neck body

• the head is a single predicate -- the rule's conclusion

• The body is a a sequence of zero or more predicates

that are the rule's premise or condition

• An empty body means the rule’s head is a fact.

• note:
– read :- as IF

– read , as AND between predicates

– a . marks the end of input

Prolog Database

father(X,Y) :- parent(X,Y),

male(X).

sibling(X,Y) :- ...

parent(adam,able)

parent(adam,cain)

male(adam)

...

Rules comprising the

“intensional database”

Facts comprising the

“extensional database”

Queries

• We also have queries in addition to having

facts and rules

• The Prolog REPL interprets input as queries

• A simple query is just a predicate that might

have variables in it:

– parent(adam, cain)

– parent(adam, X)

Running prolog

• A good free version of prolog is swi-prolog

• GL has a commercial version (sicstus prolog)

you can invoke with the command “sicstus”
[finin@linux2 ~]$ sicstus

SICStus 3.7.1 (Linux-2.2.5-15-i686): Wed Aug 11 16:30:39 CEST 1999

Licensed to umbc.edu

| ?- assert(parent(adam,able)).

yes

| ?- parent(adam,P).

P = able ?

yes

| ?-

http://www.swi-prolog.org/
http://www.sics.se/isl/sicstuswww/site/index.html

3

A Simple Prolog Session

| ?- assert(parent(adam,able)).

yes

| ?- assert(parent(eve,able)).

yes

| ?- assert(male(adam)).

yes

| ?- parent(adam,able).

yes

| ?- parent(adam,X).

X = able ?

yes

| ?- parent(X,able).

X = adam ? ;

X = eve ? ;

no

| ?- parent(X,able) , male(X).

X = adam ? ;

no

A Prolog Session

| ?- [user].

| female(eve).

| parent(adam,cain).

| parent(eve,cain).

| father(X,Y) :- parent(X,Y), male(X).

| mother(X,Y) :- parent(X,Y), female(X).

| <ctl-D in Unix, ctl-Z in Windows>

user consulted 356 bytes 0.0666673 sec.

yes

| ?- mother(Who,cain).

Who = eve

yes

| ?- mother(eve,Who).

Who = cain

yes

| ?- trace, mother(Who,cain).

(2) 1 Call: mother(_0,cain) ?

(3) 2 Call: parent(_0,cain) ?

(3) 2 Exit: parent(adam,cain)

(4) 2 Call: female(adam) ?

(4) 2 Fail: female(adam)

(3) 2 Back to: parent(_0,cain) ?

(3) 2 Exit: parent(eve,cain)

(5) 2 Call: female(eve) ?

(5) 2 Exit: female(eve)

(2) 1 Exit: mother(eve,cain)

Who = eve

yes

| ?- [user].

| sibling(X,Y) :-

| father(Pa,X),

| father(Pa,Y),

| mother(Ma,X),

| mother(Ma,Y),

| not(X=Y).

^Zuser consulted 152 bytes 0.0500008 sec.

yes

| ?- sibling(X,Y).

X = able

Y = cain ;

X = cain

Y = able ;

trace,sibling(X,Y).

(2) 1 Call: sibling(_0,_1) ?

(3) 2 Call: father(_65643,_0) ?

(4) 3 Call: parent(_65643,_0) ?

(4) 3 Exit: parent(adam,able)

(5) 3 Call: male(adam) ?

(5) 3 Exit: male(adam)

(3) 2 Exit: father(adam,able)

(6) 2 Call: father(adam,_1) ?

(7) 3 Call: parent(adam,_1) ?

(7) 3 Exit: parent(adam,able)

(8) 3 Call: male(adam) ?

(8) 3 Exit: male(adam)

(6) 2 Exit: father(adam,able)

(9) 2 Call: mother(_65644,able) ?

(10) 3 Call: parent(_65644,able) ?

(10) 3 Exit: parent(adam,able)

(11) 3 Call: female(adam) ?

(11) 3 Fail: female(adam)

(10) 3 Back to: parent(_65644,able) ?

(10) 3 Exit: parent(eve,able)

(12) 3 Call: female(eve) ?

(12) 3 Exit: female(eve)

(9) 2 Exit: mother(eve,able)

(13) 2 Call: mother(eve,able) ?

(14) 3 Call: parent(eve,able) ?

(14) 3 Exit: parent(eve,able)

(15) 3 Call: female(eve) ?

(15) 3 Exit: female(eve)

(13) 2 Exit: mother(eve,able)

(16) 2 Call: not able=able ?

(17) 3 Call: able=able ?

(17) 3 exit: able=able

(16) 2 Back to: not able=able ?

(16) 2 Fail: not able=able

(15) 3 Back to: female(eve) ?

(15) 3 Fail: female(eve)

(14) 3 Back to: parent(eve,able) ?

(14) 3 Fail: parent(eve,able)

(13) 2 Back to: mother(eve,able) ?

(13) 2 Fail: mother(eve,able)

(12) 3 Back to: female(eve) ?

(12) 3 Fail: female(eve)

(10) 3 Back to: parent(_65644,able) ?

(10) 3 Fail: parent(_65644,able)

(9) 2 Back to: mother(_65644,able) ?

(9) 2 Fail: mother(_65644,able)

(8) 3 Back to: male(adam) ?

(8) 3 Fail: male(adam)

(7) 3 Back to: parent(adam,_1) ?

(7) 3 Exit: parent(adam,cain)

(18) 3 Call: male(adam) ?

(18) 3 Exit: male(adam)

(6) 2 Exit: father(adam,cain)

(19) 2 Call: mother(_65644,able) ?

(20) 3 Call: parent(_65644,able) ?

(20) 3 Exit: parent(adam,able)

(21) 3 Call: female(adam) ?

(21) 3 Fail: female(adam)

(20) 3 Back to: parent(_65644,able) ?

(20) 3 Exit: parent(eve,able)

(22) 3 Call: female(eve) ?

(22) 3 Exit: female(eve)

(19) 2 Exit: mother(eve,able)

(23) 2 Call: mother(eve,cain) ?

(24) 3 Call: parent(eve,cain) ?

(24) 3 Exit: parent(eve,cain)

(25) 3 Call: female(eve) ?

(25) 3 Exit: female(eve)

(23) 2 Exit: mother(eve,cain)

(26) 2 Call: not able=cain ?

(27) 3 Call: able=cain ?

(27) 3 Fail: able=cain

(26) 2 Exit: not able=cain

(2) 1 Exit: sibling(able,cain)

X = able

Y = cain

yes no

| ?-

Program files

Typically you put your assertions (fact

and rules) into a file and load it
| ?- [genesis].

{consulting /afs/umbc.edu/users/f/i/finin/home/genesis.pl...}

{/afs/umbc.edu/users/f/i/finin/home/genesis.pl consulted, 0 msec 2720 bytes}

yes

| ?- male(adam).

yes

| ?- sibling(P1, P2).

P1 = cain,

P2 = cain ? ;

P1 = cain,

P2 = able ? ;

P1 = cain,

P2 = cain ? ;

P1 = cain,

P2 = able ? ;

P1 = able,

P2 = cain ? ;

P1 = able,

P2 = able ? ;

P1 = able,

P2 = cain ? ;

P1 = able,

P2 = able ? ;

no

| ?-

[finin@linux2 ~]$ more genesis.pl

% prolog example

% facts

male(adam).

female(eve).

parent(adam,cain).

parent(eve,cain).

parent(adam,able).

parent(eve,able).

% rules

father(X,Y) :-

parent(X,Y),

male(X).

mother(X,Y) :-

parent(X,Y),

female(X).

sibling(X,Y) :-

parent(P, X),

parent(P, Y).

child(X, Y) :- parent(Y, X).

How to Satisfy a Goal

Here is an informal description of how Prolog

satisfies a goal (like father(adam,X)). Suppose

the goal is G:

– if G = P,Q then first satisfy P, carry any variable

bindings forward to Q, and then satisfy Q.

– if G = P;Q then satisfy P. If that fails, then try to

satisfy Q.

– if G = not(P) then try to satisfy P. If this succeeds, then

fail and if it fails, then succeed.

– if G is a simple goal, then look for a fact in the DB that

unifies with G, or look for a rule whose conclusion

unifies with G and try to satisfy its body

Note

• Two basic conditions are true, which always
succeeds, and fail, which always fails.

• Comma (,) represents conjunction (i.e. and).

• Semi-colon represents disjunction (i.e. or):
grandParent(X,Y) :-

grandFather(X,Y);

grandMother(X,Y).

• No real distinction between rules and facts. A
fact is just a rule whose body is the trivial
condition true. These are equivalent:

– parent(adam,cain).

– parent(adam,cain) :- true.

4

Note

• Goals can usually be posed with any of several
combination of variables and constants:

–parent(cain,able) - is Cain Able's parent?

–parent(cain,X) - Who is a child of Cain?

–parent(X,cain) - Who is Cain a child of?

–parent(X,Y) - What two people have a
parent/child relationship?

Terms

• The term is the basic data structure in

Prolog.

• The term is to Prolog what the s-expression

is to Lisp.

• A term is either:

– a constant - e.g.

• john , 13, 3.1415, +, 'a constant'

– a variable - e.g.

• X, Var, _, _foo

– a compound term - e.g.

• part(arm,body)

• part(arm(john),body(john))

Compound Terms

• A compound term can be thought of as a relation

between one or more terms:

– part_of(finger,hand)

and is written as:

– the relation name (called the principal functor) which

must be a constant.

– An open parenthesis

– The arguments - one or more terms separated by

commas.

– A closing parenthesis.

• The number of arguments of a compound

terms is called its arity.

Term arity

f 0

f(a) 1

f(a,b) 2

f(g(a),b) 2

Lists

• Lists are so useful there is special syntax to

support them, tho they are just terms

• It’s like Python: [1, [2, 3], 4, foo]

• But matching is special

– If L = [1,2,3,4] then L = [Head | Tail] results in

Head being bound to 1 and Tail to [2,3,4]

– If L = [4] then L = [Head | Tail] results in Head

being bound to 4 and Tail to []

member

% member(X,L) is true if X is a member of list L.

member(X, [X|Tail]).

member(X, [Head|Tail]) :- member(X, Tail).

min

% min(X, L) is true if X is the smallest member

% of a list of numbers L

min(X, L) :-

member(X, L),

\+ (member(Y,L), Y>X).

• \+ is Prolog’s negation

operator

• It’s really “negation as

failure”

• \+ G is false if goal G can

be proven

• \+ G is true if G can not

be proven

• i.e., assume its false if

you can not prove it to be

true

5

Computations

• Numerical computations can be done in logic, but

its messy and inefficient

• Prolog provides a simple limited way to do

computations

• <variable> is <expression> succeeds if <variable>

can be unified with the value produced by

<expression>
?- X=2, Y=4, Z is X+Y.

X = 2,

Y = 4,

Z = 6.

?- X=2, Y=4, X is X+Y.

false.

From Functions to Relations

• Prolog facts and rules define relations, not

functions

• Consider age as:

– A function: calling age(john) returns 22

– As a relation: querying age(john, 22) returns true,

age(john, X) binds X to 22, and age(john, X) is

false for every X ≠ 22

• Relations are more general than functions

• The typical way to define a function f with

inputs i1…in and output o is as: f(i1,i2,…in,o)

A numerical example

• Here’s how we might define the factorial relation

in Prolog.

fact(1,1).

fact(N,M) :-

N > 1,

N1 is N-1,

fact(N1,M1),

M is M1*N.

Another example:

square(X,Y) :- Y is X*X.

def fact(n):

if n==1:

return 1

else:

n1 = n-1

m1 = fact(n1)

m = m1 * n

return m

Prolog = PROgramming in LOGic

• Prolog is as much a programming language as

it is a theorem prover

• It has a simple, well defined and controllable

reasoning strategy that programmers can

exploit for efficiency and predictability

• It has basic data structures (e.g., Lists) and

can link to routines in other languages

• It’s a great tool for many problems

