
4/26/2016

1

Perl as a Programming Language

CMSC 331: Principles of
Programming Languages

Background of Perl

• “Perl” <= Practical Extraction and Report
Language, created in 1987 by Larry Wall

• Hybrid model: source is compiled to intermediate
form at start of each execution (not pre-
compiled, like Java).

• Sits at intersection between general interpreted
programming languages like Python, special-
purpose text-processing languages like sed and
awk, and scripting languages like shell scripts.

Background of Perl

• Main (original) purpose is to apply power of
programming to text manipulation/processing

• Has grown to be a general-purpose language; but, at its
heart: “Perl is above all a text processing language”
(Wall et al.)

• Much more powerful and flexible than stream-based
editors (sed) or token-based text reprocessing (awk)

• Extremely powerful pattern-matching operators,
combined with full C-like control flow primitives, and
extensibility (via Perl or C)

• It fills a huge gap between C/Java/… and awk/sed/grep

Background of Perl

• Dynamic language
– Runtime can change parts of language behavior

• Portable
– Versions for various flavors of Unix/Linux, MacOS,

Windows, etc.

• VERY popular
– E.g.: Web servers (mod_perl), BioPerl

• Extensive set of add-on modules:
CPAN: Comprehensive Perl Archive Network
> 24,000 modules

Motivating Example: Parsing XML

<?xml version="1.0"?>
<grade-db>

<student id=“umbc10001">
<name>Doe, John</name>
<major>Computer Science</major>
<title>Mr.</title>
<dissertation>

<type>Masters</type>
<title>Getting an MS Doing Nothing</title>
<advising-ta>umbc10002</advising-ta>

</dissertation>
</student>
<student id=“umbc10002">

<name>Smith, Mary</name>
….

Motivating Example: Parsing XML

• To parse XML files (like HTML, but much more structured):
Complex pattern-based text processing
– Difficult for Java, etc.
– Need to recognize tags:

• Pattern-matching tag syntax (“<…>”)

– Need to parse tags:
• Matching and partitioning tag internals

– Need to handle special tags:
• Functions/subroutines

– Need to handle nested tags:
• Recursion!

– Process content:
• Mostly input/output, but with special context-based pattern-matching
• Might also need to scan for specific user-requested content

4/26/2016

2

Learning Perl

• Claim is that it is easy to learn

• Bible of sorts: “Programming Perl”, by Wall,
Christiansen, and Schwartz (“the Camel
book”)

• Most primitive program is:

print “Howdy, world!\n”;

(note more informal nature of even “Hello, world”)

Basic Perl Syntax

• Script, can be run from shell via “#!” header:

#!/usr/bin/perl

print “Hello, world\n”;

• Simplest program consists of sequence of
statements (like most imperative PLs), separated
by semicolons ‘;’
(Note: last semicolon is optional)

• There are built-in functions/subroutines/
commands, like “print”

Basic Perl Syntax

• Comments are indicated by a ‘#’ – anything
following in the line is ignored

• In most(!) cases, whitespace is ignored, so you
should apply it judiciously to improve
readability

• In most cases, syntax is very similar to C and
Java, including most operators

Primitive Data Types

• Perl has basic standard data types: (numbers and
strings), plus more complex aggregates (arrays,
hashtables, etc.)

• Type set is simplified: all numbers are effectively floats,
all characters and strings are represented as sequences
of characters.

• String literals implied by quote marks (single or double)
• Numbers implied by digits (and some special chars, e.g.

“e’ for exponentiation) w/o quotes (0.0 == 0)
• Boolean is implied by interpretation:

– Strings: “0”, “” or null are false, all else is true
– Numbers: 0 is false, all else is true (beware, tho’)

Scalars, Arrays and Hashes

• Perl is a “loosely typed” or “dynamically typed”
language: no declarations

• So, when we talk about data types in Perl, we
bundle all primitive types into one: “scalar”

• There are also “array” and “hash” types to round
out the trio.
– An “array” (or “list”) is a collection of things indexed

by numerical position, starting at 0
– A “hash” is also a collection, but indexed by a string

value: the “key”. Underlying representation is a hash
table—thus the name.

Variables

• Variables are all prefixed by one or another
special symbol, so will not conflict with keywords

• Scalars: variables begin with ‘$’, e.g.:
$name = “Mary”;

$age = 21;

• Arrays: variables begin with ’@’, e.g.:
@ages = (19, 19, 20, 17);

• Hashes: variables begin with ‘%’, e.g.:
%grades = (“Jim” => 2.5, “Mary” => 4.0,

“Rob” => 4);

4/26/2016

3

Accessing Array Members

• Access elements in an array with ‘[]’
@ages = (19, 19, 20, 17); # defines an array
$my_age = $ages[2]; # returns 20
$other_age = $ages[-1] # negative index: from end

• Access element in a hashtable with ‘{ }’:
%grades = (“Jim” => 2.5,“Mary” => 4.0,“Rob” => 4);
$rob = $grades{“Rob”};

NB: Whether you use $, @, or % depends on type of value
you want to access, not type of collection it is coming from!
This is true of all collection types. Study examples above.
– So, in above examples, we would not do:

$my_age = @ages[2];

or:
$rob = %grades{“Rob”};

Some Useful Array Functions

• Getting the length of an array:
$size = @some_array;

– But why does this work? See “Contexts” later.

• Getting the index of the last element of an array:
$last = $#some_array;

• Using an array as a push-down stack:
push(@some_array, “last thing”);
$last = pop(@some_array);

– Note that the second line above should set $last to the string
“last thing”, as well as restoring @some_array to its original
state.

• Reversing an array:
@rev_array = reverse(@some_array);

Assignment & Arithmetic Operators

• Assignment operators (almost identical to C and
Java):

$name = “Susan”;

$age += 1;

$num_left -= 10;

• Arithmetic operators (again, much like C/Java):
$budget = 100 – 3 * $num_bought;

$remainder = 17 % 3;

$count++;

– Even has modulus and auto-increment/decrement
operators

– Precedence and associativity rules similar to C/Java

Comparison and Logical Operators

• Standard comparison operators for numbers:
– Numerical: ==, !=, <, >, <=, >=, e.g.:
if ($val < $limit) …

• Logical operators: two versions:
– Symbolic (as in C/Java): &&, ||, !
if ($age < 21 || $status eq “4F”) …

– …And text version (we will see later)
– Logical operators don’t return boolean—return last thing

evaluated:
$a = ($x_is_defined and $x) or
$default_value;

String Operators

• String literals are created with single or double quotes:
$first_name = ‘John’;
$last_name = “Doe”;

• Inside single quotes:
– can use double quotes
– Escapes like \n are treated literally

• Inside double quotes only:
– Can use single quotes
– Special escapes like \n, \t are interpreted
– Can interpolate (“substitute in”) variables:
“$name” in literal replaced w/its value:
$output = “Hello $name, now are you”;

– (Will see this interpolation again later…)

String Operators

• Separate set of comparison operators for strings:
eq, ne, lt, gt, le, ge

E.g.:
if ($name lt “zzzzz”) …

– Most languages would use functions for these

• Special concatenation operator: ‘.’ (dot)
$output = “Hello “ . $name . “, how are you?”;
$output .= “ I am fine”; # Can even append

• Also have some special string functions:
– length($str): returns length of string arg
– chomp($var): removes trailing newline from end of the variable;

Note that this is in-place (i.e., $var is changed)
– split(’ ’, $str) : returns pieces of string, in a list
– reverse($str): reverses the chars in the string (also lists)

4/26/2016

4

String Operators

$line = “hello there everyone\n”;

chomp($line); # remove trailing ‘\n’

@pieces = split(’ ’ , $line);

foreach $str (@pieces) {

$rev = reverse($str);

print $rev, “\n”;

}

Will output:
olleh

ereht

enoyreve

Conditionals

• Perl’s primarily conditional form is similar, but
slightly different, from C/Java:

if ($class eq “cmsc331”) {

$prof = “Park”;

}

elsif ($class eq “cmsc202”) {

$prof = “Mitchell”;

}

else {

$prof = “Unknown”;

}

– Note special spelling of “elsif”; some languages are even stranger: PHP
has both “elseif” and “else if”, with slightly different semantics!

Conditionals

• For all Perl control structures (conditionals,
loops, etc.):

– The statements part of the structure must be a
program block, inside “{ … }”

– You cannot just have a single statement w/o
braces

Loops

• Standard “while”, “for” , and “for each” loops:
while ($count < $end) {

Do your work here
}

for ($i = 0; $i < 100; $i++) {
Again, do stuff here

}

foreach $elem (@some_list) {
Like Java’s “for (MyClass elem: myList)”

}

• Perl uses keywords next and last in place of
C/Java’s “continue” and “break”;

Input/Output

• Perl uses “filehandles”, which are special “things”
created by opening files:

open(MYFILEHANDLE, “myfile.txt”);

From here on, can do I/O operations on

MYFILEHANDLE

• Perl has a default input and output filehandle already
open (much like C’s stdin/stdout, or Java’s
System.in/System.out) called “STDIN” and “STDOUT”

• You read from a filehandle by enclosing it in “<…>”, and
assigning that to a variable:

$next_line = <MYFILEHANDLE>;

$next_cmd = <STDIN>;

Input/Output

• For output, functions like “print” default to
STDOUT, but you can change that:

print $next_line; # outputs to STDOUT
(the screen)

print MYFILEHANDLE $cmd; # write $cmd into
“myfile.txt”

Curiosity: what do you think the following does?
(Note the ‘@’)

@buffer = <MYFILEHANDLE>;

(See “Contexts” slides later)

4/26/2016

5

Regular Expressions—Perl Rules2

(“Rules2” == because these are Perl’s regexp rules,
and it is also where Perl truly rules!)

• Perl has an extremely powerful set of regular
expression operations

• Perl uses an augmented form of the regular
expression syntax we’ve already learned

• It allows us to specify actions as a result of
matches, in either a transformational or
procedural, syntax (i.e., “turn X into Y”, or “when
X, do Y”)—whichever is more convenient.

Regular Expressions—Perl Rules2

• Perl supports pattern-matching, substitution, and
translation operations as primitives

• To perform regular expression-based functions, use the
binding operator: =~

• The left-hand side (LHS) of the ‘=~’ operator is the target of
the match/substitution/translation, the RHS is the action to
perform on the RHS (note: no quotes needed here).

• An example: searching for substrings inside $a:

if ($a =~ m/hello/)
{ print “Found \”hello\””; }

if ($a !~ m/bye/)
{ print “Didn’t find ‘bye’”; }

Regular Expressions—Perl Rules2

• To do pattern-matching string search:

– syntax: “m/pattern/”, where pattern can be a
regexp:

$status = “error: bad name or bad mode”;

if ($a =~ m/err/)

{ print “There was an error.”; }

Regular Expressions—Perl Rules2

• To substitute for the matched string:
syntax: “s/old/new/”

$status = “error: bad name or bad mode”;

$status =~ s/bad/good/;

$status becomes “error: good name or bad mode”

Note: second “bad” unchanged

Add a ‘g’ (for “global”) at end to replace all
instances); e.g.:

$status = “error: bad name or bad mode”;

$status =~ s/bad/good/g; # ‘g’: global replace

Now, $status is “error: good name or good mode”

Regular Expressions—Perl Rules2

• To translate characters from one set to
another: syntax: tr/abc/xyz/

$a = “All Bugs Crunch”;

$a =~ tr/ABC/abc/;

print $a;

would output:
all bugs crunch

Regular Expressions—Perl Rules2

• The pattern to be matched can be a full
regular expression, and may contain:
– character classes:

• One of a specific set, e.g.: [XYZ]

• A range: [a-z]

• All but some set, e.g. non-digits: [^0-9]

• One of a set of predefined character classes, which you
can reference with the “\x”-style form:
– \d – digit

– \w – word (i.e., alphanumeric chars)

– \s – whitespace (space, tab, newline, etc.)

4/26/2016

6

Regular Expressions—Perl Rules2

• Can specify the number of occurrences:

– Familiar “0 or more”, “1 or more”: *, +

• E.g.: “/[a-z]+[0-9]*/” means “one or more letters,
follewed by 0 or more digits”

– Even a range of times:

• E.g.: /[a-zA-Z0-9]{1-8}\.[a-z]{1-3}/
means “1 to 8 alphanumeric chars, followed by a ‘.’
(dot), followed by 1 to 3 letters. This pattern might be
useful for a Windows 8.3 filename

Regular Expressions—Perl Rules2

• Some other things you can do:

– Pick specific parts of the matched pattern, and…

• use it in the substitution part of the pattern

• Access it procedurally in your code

Use: ‘(…)’ to capture a part of the regexp, then use $1,
$2, etc. to access the captured substrings

(Example on next slide)

– Use variables for parts of the pattern

• Again, part of interpolation

• No interpolation in ‘…’ (i.e., single-quote) strings

– …

Regular Expressions—Perl Rules2

• Be careful when using matched pattern:
– Regexps are greedy, but also match earliest

instance, which takes precedence.

E.g.:
$str = “---XYZ:aaa:XYZXYZ:ccc:”;

$str =~ m/([XYZ]+:)/;

print $1; # Corresponds to first “(…)” subpattern

Will print out just “XYZ:” due to early matching,

even though second run is longer

$str =~ m/([abc].*:)/;

print $1;

Greedy: will match “aaa:XYZXYZ:ccc:”

Regular Expression Examples

• To match a simple HTML/XML tag:
$a =~ m/<[\w]*>/;

• An attempt at being more liberal:
$a =~ m/<.*>/; # will work for simple tag by

itself, but will not work for

“this is a <a>link.”--

will greedily match entire “<a>link”

• Better version:
$a =~ m/<[^>]*>/;

• A whitespace-bounded substring:
$a =~ m/\s[^\s]+\s/;

– Note: using predefined class “\s” here (== whitespace)

Functions/Subroutines

• To define a function (a.k.a. subroutine) in Perl:
sub my_add # parameters are in @_

{

my $num1 = $_[0];

my $num2 = $_[1];

Or, can use:

($num1, $num2) = @_;

return $num1 + $num2;

}

• To call the defined function, use ‘&’ prefix:
$val = &my_add(37, 10);

print $val; # outputs “47”

Variable Scope

• Variables are by default global scope
(any code or function can see anywhere)

• You can create a lexically scoped variable with
the keyword “my”:

my $count = 1;

• You can create dynamically scoped variables
with the keyword “local”:

local $special_var;

4/26/2016

7

Executing External Programs

• Can run programs from the filesystem
(executable binaries, scripts, etc.) and capture
the output for processing:

First, get listing of park’s home directory:

my @ls_output = `ls -l ~park`

Now, can post-process output here

foreach $file_desc (@ls_output) {

…

}

– Note: those are backquotes around the “ls …”!

[EXAMPLES]

Sample Perl Program

@DNA_T = (); # Create an empty list

open(SEQFILE, “chromosome.db”) or

die “Couldn’t open file”;

while ($line = <SEQFILE>) {

splitting on empty pattern divides every char

@subseq = split(//, $line);

foreach $c (@subseq) {

push(@DNA_T, $c);

}

}

@DNA_Q : from user; contains each nucleotide of query

sequence as an element

$length_Q = @DNA_Q; # scalar context gets list length

$length_T = @DNA_T;

Sample Perl Program

(continued)

$num_matches = 0;

Search for sequence match,

and print position of match if found.

for ($i = 0; $i <= ($length_T - $length_Q); $i++) {

for ($j = 0;$j < $length_Q; $j++) {

if ($DNA_Q[$j] ne $DNA_T[($i + $j)]) {

last; # equiv. to “break”

}

}

if ($j == $length_Q) {

print ("Found match at $i in chromosome\n");

$num_matches++;

}

}

(Adapted from http://www.bioinformatics.wsu.edu/bioinfo_course/notes/lecture4.pdf)

[END OF BASIC CONCEPTS—
ON TO ADVANCED PERL!]

Contexts

• Recall that $, @, and % indicate the type
(scalar, array, and hash, respectively)

• The various types can then yield different
values depending on perceived use (just trying
to be helpful)

• Perl does this type-mapping based on context
(list or scalar)

4/26/2016

8

Contexts

• There are some contexts that assume lists,
others that are clearly expecting scalars

$foo = “Hello”; # scalar into scalar
@fum = $foo; # list context: create 1-item list
@fie = @fum; # list context: copy entire array
$faa = @fie; # scalar context: copy size of @fie
Perl tries to infer context from code

• It is not always obvious what the context type
is—just have to learn from experience 

Contexts

• More fun with contexts:
@fie = (“Hello”, “bye”);

$fie[2] = “adios”;

Print all elements in @fie:

print @fie

Read in ALL the lines from a file at once

@all_lines = <FILEHANDLE>;

($l1, $l2, $l3) = @all_lines;

Contexts

• All variables treated as scalar in boolean
context:

while (@argv) {

process(shift @argv);

}

or:
if (%symbol_table) {

Things to do if %symbol_table hash

table is not empty

}

Namespaces

• In Perl, scalars, arrays, and hashtables all have
distinct namespaces (“tables of variable names”)

• So, $foo is a different variable from @foo, which
is distinct from %foo:

$foo = 99;

@foo = (”x”, ”y”, ”z”);

%foo = (”0” => ”a”, ”1” => ”b”, ”2” => ”c”);

print $foo; # outputs “99”

print @foo; # outputs “xyz”

print %foo; # outputs “1b0a2c”; not pretty…

• Important to note: in above, $foo, $foo[0], and
$foo{”0”} are all distinct, co-existing variables!

Alternative Forms Alternative: Hash Initialization

• Hashes can also use ‘,’ instead of “=>”
%grades = (“Jim” => 2.5, “Mary” => 4.0,

“Rob” => 4);

Can also just use ‘,’:

%profs = (“Jim”, “J. Park”, “Mary”, “J.

Park”,

“Rob”, “T. Finin”);

4/26/2016

9

Alternative: Quoted Strings

• “Hello, $name\n” and ‘Hello, $name\n’ are
different

• String comparison operators are different
(“eq” vs. “==“)—why?

– Numbers and strings can be mixed, interchanged

Alternative: Regexp Delimiters

• In regexp matching, can use any other
delimiter, too, including matching left/right
pairs:

$a =~ m<foo>;

• …Or if you use ‘/…/’ delimiters, the ‘m’ is
optional:

if ($a =~ /err/) …

This is the most common form

Alternative: Function Return Value

• If no “return” statement, return value is last
evaluated expression

• This is similar to what Lisp does… but why
have both?

Alternative: Conditionals and
Loops

• In addition to “if”, there is “unless”:
unless ($age >= 21) { …

But that form has no “unlesif” or any such

• In addition to “while”, there is “until”:
until ($count >= $last) {

Note that “until” is like “while (not (…))”

}

• Perl also has “named loops”, and you can use this to
specify which level of nested loop “next” or “last”
should continue/break out of (will not describe here)

Alternative: Logical Ops

• In addition to usual ||/&& logical operators:
alternative text versions: “and”, “or”, “not”

if ($age < 21 or $status eq “4F”)

…

• The symbolic and text logical operators have
the same semantics, but are of different
precedence (“and”, “or”, and “not” are much
lower precedence)

Alternative: Logical Ops

• They can even be used outside of “if”
statements!

– A common pattern, that takes advantage of short-
circuiting, is:
open(HANDLE, “myfile.txt”) or die “bad file!”;

– Also can do:
This reads in entire file into array,

but only if open succeeds

open(FILE, “foo.txt”) and @lines = <FILE>;

4/26/2016

10

Alternative: Statement Modifiers

• Can modify statements with trailing conditionals:
– blahblahblah if (expr);

– blahblahblah unless (expr);

– blahblahblah while (expr);

– blahblahblah until (expr);

• Even though the modifier comes at the end, it is evaluated first, and
with all four kinds, the statement might not be executed at all:

Reattach STDIN only if filename is specified
open(STDIN, $fname) if $fname ne “”;
Then, dump all of the contents to the screen
print $line while ($line = <STDIN>);

– In above, open() is not called if $fname is an empty string,
and print() might never be called if we get EOF right away

• There is also “do { … } while (expr)”… but let’s not even go there
(until later)

Using (and Abusing) Defaults

• Many operators and functions have implied default
arguments (@_, $_, STDIN, STDOUT, etc.)

• For example: “$_” is default for much I/O, regexp, etc.; so,
could do:

while ($line = <STDIN>) {

if ($line =~ /[a-z]+[0-9]/) {
print STDOUT “Found an identifier: “;
print STDOUT $line;

• Or, could do:
while (<>) { # implied “$_ = “, implied “STDIN”

if (/[a-z]+[0-9]/) { # implied “$_ =~ “
print “Found an identifier: “; # implied “STDOUT“
print; # implied “STDOUT”, “print $_“

• “while ($line = <STDIN>)” works because “\n” is always left
in the string, so != “” or “0”, and therefore, true.

[ISSUES WITH PERL AS A
PROGRAMMING LANGUAGE]

Issues with Perl

• No declarative standard: the language is what
the canonical (and only) interpreter does.

– Perl6 has language spec, but Perl6 is not real
(yet)—has been in development since 2000!

Issues with Perl

• Bends (possibly outright violates) principles of
simplicity and orthogonality

– Perl motto: "There's More Than One Way To Do It“
(capitalization theirs; commonly known as
“TMTOWTDI”)

– Footnote in Camel book specifically saying Perl is
not orthogonal, but rather, “diagonal”

– E.g.: Perl has both “if” vs. “unless”, “while” vs.
“until”

Issues with Perl

• Examples of multiple ways to do simple things
(from book):
@days[3 .. 5]
== ($days[3], $days[4], $days[5])
== @days[3, 4, 5]

’xyz’
== q/xyz/ == q#xyz# == q{xyz} == q<xyz>

”abc” == qq/abc/ == …

s/abc/xyz/
== s{abc}{xyz} == s{abc}[xyz] == s[abc][xyz]
== s[abc]<CR>

[xyz]

4/26/2016

11

Issues with Perl

• This “multiple ways” philosophy can lead to semantic
ambiguity
– Note the following regexp pattern (in Perl, pattern matches are

subject to interpolation; explained earlier):
/$foo[bar]/

So, should it be treated as an interpolated $foo, followed by a
character class, as in:
/${foo}[bar]/

Or should it be parsed as a subscripted array:
/${foo[bar]}/

Book says if @foo doesn’t exist, Perl will treat “[bar]” as a
character class, but if @foo does exist, it will “try to guess”!

Issues with Perl

• Readabilty/Writeability:
– Wall et al. claim (talking about how Perl borrowed

elements from many other languages):
In fact, just about any programmer can read a well written
piece of Perl code and have some idea of what it does.

(“Programming Perl”, p.XI)

– IMHO, Perl is high in writeability, but very low in
readability, due to lack of simplicity and orthogonality:
Some call Perl a “write-only language”

– Poor readability leads in turn to issues with
maintainence, reliability, and modification

Random Confusing Examples

• Example 1: What is true??
0.00 == 0 == “0”, so: == false

“0.00” != “0”, so: == true

But: “0.00” + 0 == 0.00 == 0 == “0”, so == false

• Example 2: Regexp ambiguity
– The regexp: “/last$/” will search for “last”

occurring at end of string…

– But “/last$a/” will search for “last” with value of
$a interpolated, anywhere in string!

Random Confusing Examples

• Example 3: How do I access function parameters?
(“Let me count the ways…”)

sub my_add # parameters are in @_

{

can access directly:

$a = $_[0] + $_[1]

Or, can use:

($num1, $num2) = @_;

Or:

$num1 = shift @_;

$num2 = shift @_;

Or could have used (assuming more args):

$num3 = shift;

$num4 = shift;

}

Random Confusing Examples

• Example 4: Perl’s “do {} while” (mentioned
earlier, but avoided like the plague)

– “do {…}” is not a compound statement: they are
just terms in an expression; so…

– Terminating ‘;’ mandatory in “do {};”

– “do {…} while (cond)” is not a control structure: it
is a “while” modifier to a “do {}” term… but: the
usual action of the “while” modifier is altered to
execute the “{…}” part at least once.

Random Confusing Examples

• Example 5: What will following print out?
sub foo { # Recall: @_ contains the arguments

print “ in foo:”; print @_;
}

sub test {
print “\n foo1:”;
foo(“ Hello”, “ bye”);
print “\n foo2:”;
foo();
print “\n foo3:”;
&foo;
print “\n foo4:”;
foo;

}

&test(“yes”, “no”);

• Output:
foo1: in foo: Hello bye

foo2: in foo:

foo3: in foo: yes no

foo4:

4/26/2016

12

Random Confusing Examples

• Example 5: What will following print out?
sub foo { # Recall: @_ contains the arguments

print “ in foo:”; print @_;
}

sub test {
print “\n foo1:”;
foo(“ Hello”, “ bye”);
print “\n foo2:”;
foo();
print “\n foo3:”;
&foo;
print “\n foo4:”;
foo;

}

&test(“yes”, “no”);

• Output:
foo1: in foo: Hello bye

foo2: in foo:

foo3: in foo: yes no

foo4:

Random Confusing Examples

• Example 5: What will following print out?
sub foo { # Recall: @_ contains the arguments

print “ in foo:”; print @_;
}

sub test {
print “\n foo1:”;
foo(“ Hello”, “ bye”);
print “\n foo2:”;
foo();
print “\n foo3:”;
&foo;
print “\n foo4:”;
foo;

}

&test(“yes”, “no”);

• Output:
foo1: in foo: Hello bye

foo2: in foo:

foo3: in foo: yes no

foo4:

Random Confusing Examples

• Example 5: What will following print out?
sub foo { # Recall: @_ contains the arguments

print “ in foo:”; print @_;
}

sub test {
print “\n foo1:”;
foo(“ Hello”, “ bye”);
print “\n foo2:”;
foo();
print “\n foo3:”;
&foo;
print “\n foo4:”;
foo;

}

&test(“yes”, “no”);

• Output:
foo1: in foo: Hello bye

foo2: in foo:

foo3: in foo: yes no

foo4:

Random Confusing Examples

• Example 6: Barewords:
– In some cases, Perl lets you omit quotation marks for

string literals

– For example, can do:
print STDOUT hello, ‘ ‘, world, “\n”;

outputs “hello world”

– BUT: if you leave out STDOUT because it is default:
print hello, ‘ ‘, world, “\n”;

• Tries to parse hello as filehandle, gets syntax error

– However, if you don’t use bareword:
print “hello”, ‘ ‘, world, “\n”;

It works! outputs “hello world” again

PGA (Perl Golf Apocalypse)

• Write a subroutine that accepts a list of words,
and returns the list sorted by the first *vowel*
that appears in each word. If two words have the
same first vowel, it does not matter which is
sorted first. Words will be in lowercase and will
always contain at least one vowel. (Vowels are a,
e, i, o, and u.)
e.g.: hole('dog', 'cat', 'fish', 'duck', 'lemur')
returns: ('cat', 'lemur', 'fish', 'dog', 'duck')

sub hole{sort{($a=~/([aeiou])/)[0]cmp($b=~//)[0]}@_}

Resources

• Another resource:
http://www.perltutorial.org/introducing-to-perl.aspx

http://www.perltutorial.org/introducing-to-perl.aspx

