Functional
Programming in
Scheme and Lisp

http://www.lisperati.com/landoflisp/

Overview

* In a functional programming language,
functions are first class objects

* You can create them, put them in data
structures, compose them, specialize them,
apply them to arguments, etc.

* We'll look at how functional programming
things are done in Lisp

eval

* Remember: Lisp code is just an s-expression
* You can call Lisp’s evaluation process with the
eval function
> (define s (list 'cadr '' (one two three)))
>s
(cadr ' (one two three))
> (eval's)
two
> (eval (list 'cdr (car '((quote (a . b)) c))))
b

apply

* apply takes a function & a list of arguments for it &
returns the result of applying the function to them
> (apply + '(1 2 3))
6
* It can be given any number of arguments, so long as
the last is a list:
>(apply + 12 '(3 4 5))
15
* A simple version of apply could be written as
(define (apply f list) (eval (cons f list)))

lambda

* The define special form creates a function and
gives it a name

* However, functions don’t have to have names,
and we don’t need to use define to create
them

* The primitive way to create functions is to use
the lambda special form

* These are often called lambda expressions, e.g.

(lambda (x) (+ x 1))

http://www.lisperati.com/landoflisp/
http://www.lisperati.com/landoflisp/
http://www.lisperati.com/landoflisp/

lambda expression

* A lambda expression is a list of the symbol
lambda, followed by a list of parameters, fol-
lowed by a body of one or more expressions:

> (define f (lambda (x) (+ x 2)))
>f

#<proceedure:f>

> (£ 100)

102

> ((lambda (x) (+ x 2)) 100)
102

Lambda expression

* lambda is a special form

* When evaluated, it creates a function and
returns a reference to it

* The function does not have a name

* Alambda expression can be the first ele-
ment of a function call:

> ((lambda (x) (+ x 100)) 1)
101

* Other languages like python and javascript
have adopted the idea

define vs. define

(define (add2 x) - The define special form

(+x2)) comes in two varieties
. The three expressions to
(define add2 the right are entirely
(lambda (x) (+x 2))) equivalent
. The first define form is
(define add2 #f) just more familiar and
(set! add2 convenient when defining
(lambda (x) (+ x 2))) a function

Functions as objects

* While many PLs allow functions as
arguments, nameless lambda functions
add flexibility
> (sort '((a 100)(b 10)(c 50))

(lambda (x y) (< (second x) (second y))))
((b 10) (c 50) (a 100))

* There is no need to give the function a

name

lambdas in other languages

* Lambda expressions are found in many
modern languages, e.g., Python:
>>> f =lambda x,y: x*x +y
>>> f
<function <lambda> at 0x10048a230>
>>> (2, 3)
7
>>> (lambda x,y: x*x+y)(2,3)
7

Mapping functions

* Lisp & Scheme have several mapping functions
* map (mapcar in Lisp) is the most useful

* |t takes a function and 21 lists and returns a list
of the results of applying the function to
elements taken from each list

> (map abs (3 -4 2 -5 -6))
(34256)
>(map+‘123)(456))

(579)
>(map+(123)(456)‘(789))
(12 15 18)

More map examples

> (map cons'(abc)'(123))
((@a.1)(b.2)(c.3))
> (map (lambda (x) (+ x 10)) ‘(1 2 3))
(11 12 13)
>(map+'(123)'(45))
map: all lists must have same size; arguments were:
#<procedure:+> (12 3) (4 5)

=== context ===
/Applications/PLT/collects/scheme/private/misc.ss:7
4:7

Defining a simple “one argument” version of
map is easy

Defining map

(define (map1 func list)
(if (null? list)
null
(cons (func (first list))
(map1 func (rest list)))))

Define Lisp’s every and some

* every and some take a predicate and one or
more sequences
* When given just one sequence, they test
whether the elements satisfy the predicate
> (every odd? ‘(1 3 5))
#t
> (some even? ‘(1 2 3))

#t
* If given >1 sequences, the predicate takes as

many args as there are sequences and args

are drawn one at a time from them:

> (every > ‘(1 3 5) ‘(0 2 4))

#t

Defining every is easy

(define (everyl f list)
;; note the use of the and function
(if (null? list)
#t
(and (f (first list))
(everyl f (rest list)))))

Define some similarly

(define (some1 f list)
(if (null? list)
#f
(or (f (first list))
(somel f (rest list)))))

Will this work?

* You can prove that P is true for some list ele-
ment by showing that it isn’t false for every one
* Will this work?
> (define (somel f list)
(not (everyl (lambda (x) (not (f x))) list)))

> (somel odd?'(24 67 8))

#t
> (somel (lambda (x) (>x 10)) '(4 8 10 12))

#t

filter

(filter <f> <list>) returns a list of the elements of
<list> which satisfy the predicate <f>

> (filter odd? ‘(0123 45))

(135)

> (filter (lambda (x) (> x 98.6))
(101.1 98.6 98.199.4 102.2))

(101.199.4 102.2)

Example: filter

(define (filterl func list)
;; returns a list of elements of list where funct is true
(cond ((null? list) null)
((func (first list))
(cons (first list) (filterd func (rest list))))
(#t (filterl func (rest list)))))

> (filterl even? (123456 7))
(246)

Example: filter

* Define integers as a function that returns a
list of integers between a min and max
(define (integers min max)
(if (> min max)
null
(cons min (integers (add1 min) max))))
* Do prime? as a predicate that is true of
prime numbers and false otherwise
> (filter prime? (integers 2 20))
(2357111317 19)

Here’s another pattern

* We often want to do something like sum the
elements of a sequence
(define (sum-list I)
(if (null? 1)
0
(+ (first 1) (sum-list (rest 1)))))

* Other times we want their product
(define (multiply-list)
(if (null? 1)
1
(* (first 1) (multiply-list (rest 1)))))

Here’s another pattern

* We often want to do something like sum the
elements of a sequence
(define (sum-list)
(if (null?1)
0
(+ (first I) (sum-list (rest 1)))))

* Other times we want their product
(define (multiply-list1)
(if (null? 1)
1
(* (first I) (multiply-list (rest 1)))))

Example: reduce

* Reduce takes (i) a function, (ii) a final value
and (iii) a list of arguments

Reduce of +, 0, (v1v2v3...vn)is just
V1+V2+V3+..Vn+0
* In Scheme/Lisp notation:
> (reduce +0‘(12345))
15
(reduce *1°12345))
120

Example: reduce

(define (reduce function final list)
(if (null? list)
final
(function
(first list)
(reduce function final (rest list)))))

(define (sum-list list) USing rEduce

;; returns the sum of the list elements
(reduce + 0 list))

(define (mul-list list)
;; returns the sum of the list elements
(reduce * 1 list))

(define (copy-list list)
;; copies the top level of a list
(reduce cons ‘() list))

(define (append-list list)
;; appends all of the sublists in a list
(reduce append ‘() list))

The roots of mapReduce

mapreduce
* MapReduce is a software frame- v}
work developed by Google for / Amapz

parallel computation on large gsmf'
datasets on computer clusters
* It’s become an important way to {iapn
exploit parallel computing using
conventional programming languages and techniques.
* See Apache’s Hadoop for an .
TEREGD

open source version

* The framework was inspired by functional
programming’s map, reduce & side-effect free programs

Function composition

* Math notation: g *h is a composition of func-
tionsgand h

* If f=g *h then f(x)=g(h(x)
* Composing functions is easy in Scheme

> compose > (define sd (compose sq
#<procedure:compose> dub))

> (define (sq x) (* x X)) > (sd 10)

> (define (dub x) (* x 2)) 400

> (sq (dub 10)) > ((compose dub sq) 10)
400 200

> (dub (sq 10))
200

Defining compose

* Here’s compose for two functions in Scheme
(define (compose2 f g) (lambda (x) (f (g x))))

* Note that compose calls lambda which returns

a new function that applies f to the result of

applying g to x

We’'ll look at how the variable environments

work to support this in the next topic, closures

But first, let’s see how to define a general ver-

sion of compose taking any number of args

Functions with any number of args

* Defining functions that takes any number of

arguments is easy in Scheme
(define (foo . args) (printf "My args: ~a\n"
args)))

* If the parameter list ends in a symbol as
opposed to null (cf. dotted pair), then it’s value
is the list of the remaining arguments’ values
(define (f x y . more-args) ...)

(define (map f. lists) ...)

http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Hadoop
http://en.wikipedia.org/wiki/Function_composition
http://docs.racket-lang.org/reference/Writing.html(def._((quote._~23~25kernel)._printf))

Compose in Scheme

(define (compose . FS)
;; Returns the identity function if no args given

(if (null? FS)
(lambda (x) x)
(lambda (x) ((first FS) ((apply compose (rest FS)) x)))))
; examples
(define (add-a-bang str) (string-append str "!"))
(define givebang

(compose string->symbol add-a-bang symbol->string))
(givebang 'set) ; ===> set!
; anonymous composition
((compose sqrt negate square) 5) ; ===> 0+5i

A general every

* We can easily re-define other functions to take
more than one argument
(define (every fn . args)
(cond ((null? args) #f)
((null? (first args)) #t)
((apply fn (map first args))
(apply every fn (map rest args)))
(else #f)))
* (every>‘123)023))=>#t
* (every>‘(123)‘(0203))=>#f

Functional Programming Summary

* Lisp is the archetypal functional programming
language

* It treated functions as first-class objects and
uses the same representation for data & code

* The FP paradigm is a good match for many
problems, esp. ones involving reasoning about
or optimizing code or parallel execution

* While no pure FP languages are considered
mainstream, many PLs support a FP style

http://docs.racket-lang.org/reference/strings.html(def._((quote._~23~25kernel)._string-append))
http://docs.racket-lang.org/reference/symbols.html(def._((quote._~23~25kernel)._string-~3esymbol))
http://docs.racket-lang.org/reference/symbols.html(def._((quote._~23~25kernel)._symbol-~3estring))

