
1

Lists in Lisp
and Scheme

a

Lists in Lisp and Scheme

• Lists are Lisp’s fundamental data structures,
but there are others

– Arrays, characters, strings, etc.

– Common Lisp has moved on from being
merely a LISt Processor

• However, to understand Lisp and Scheme
you must understand lists

– common functions on them

– how to build other useful data structures
with them

Lisp Lists

• Lists in Lisp and its descendants are very
simple linked lists

– Represented as a linear chain of nodes

• Each node has a (pointer to) a value (car of
list) and a pointer to the next node (cdr of list)

– Last node’s cdr pointer is to null

• Lists are immutable in Scheme

• Typical access pattern is to traverse the list
from its head processing each node

In the beginning was the cons (or pair)

• What cons really does is combines two objects into a
two-part object called a cons in Lisp and a pair in
Scheme

• Conceptually, a cons is a pair of pointers -- the first is
the car, and the second is the cdr

• Conses provide a convenient representation for pairs
of any type

• The two halves of a cons can point to any kind of
object, including conses

• This is the mechanism for building lists

• (pair? ‘(1 2)) => #t

a null

Pairs

• Lists in Lisp and Scheme are defined as
pairs

•Any non empty list can be considered as a
pair of the first element and the rest of
the list

•We use one half of a cons cell to point to
the first element of the list, and the other
to point to the rest of the list (which is
either another cons or nil)

a

Box and pointer notation

a

A one element list (a)

a b c

A list of three elements (a b c)

a null

Common notation:
use diagonal line in
cdr part of a cons
cell for a pointer to
null

(a)

(a b c)

http://docs.racket-lang.org/reference/pairs.html
http://docs.racket-lang.org/reference/pairs.html

2

What sort of list is this?

a d

b c

> (define Z (list ‘a (list ‘b ‘c) ‘d))

> Z

(a (b c) d)

> (car (cdr z))

??

Z

Z is a list with three

elements: (i) the atom a,

(ii) a list of two elements,

b & c and (iii) the atom d.

Pair?

• The function pair? returns true if its
argument is a cons cell

• The equivalent function in CL is consp

• So list? could be defined:

(define (list? x) (or (null? x) (pair? x)))

• Since everything that is not a pair is an
atom, the predicate atom could be defined:

(define (atom? x) (not (pair? x)))

Equality
• Each time you call

cons, Scheme
allocates a new
cons cell from
memory with room
for two pointers

• If we call cons twice
with the same args,
we get two values
that look the same,
but are distinct
objects

(define L1 (cons 'a null))

L1

(A)

(define L2 (cons 'a null)))

L2

(A)

(eq? L1 L2)

#f

(equal? L1 L2)

#t

(and (eq? (car L1)(car L2))

(eq? (cdr L1)(cdr L2)))

#t

Equal?

• Do two lists have the same elements?

• Scheme provides a predicate equal? that is like
Java’s equal method

• eq? returns true iff its arguments are the same
object, and

• equal?, more or less, returns true if its
arguments would print the same.

> (equal? L1 L2)

#t

• Note: (eq? x y) implies (equal? x y)

Equal?

(define (myequal? x y)

; this is how equal? could be defined

(cond ((and (number? x) (number? y))(= x y))

((and (string? x) (string? y)) (string=? x y))

((not (pair? x)) (eq? x y))

((not (pair? y)) #f)

((myequal? (car x) (car y))

(myequal? (cdr x) (cdr y)))

(#t #f)))

Use trace to see how it works
> (require racket/trace)

> (trace myequal?)

> (myequal? '(a b c) '(a b c))

>(myequal? (a b c) (a b c))

> (myequal? a a)

< #t

>(myequal? (b c) (b c))

> (myequal? b b)

< #t

>(myequal? (c) (c))

> (myequal? c c)

< #t

>(myequal? () ())

<#t

#t

• Trace is a debugging package showing what args a user-
defined function is called with and what it returns

• The require function loads the package if needed

http://docs.racket-lang.org/reference/booleans.html?q=equal?&q=list-tail&q=list-ref(def._((quote._~23~25kernel)._equal~3f))
http://docs.racket-lang.org/reference/booleans.html?q=eq?&q=equal?&q=list-tail&q=list-ref(def._((quote._~23~25kernel)._eq~3f))
http://docs.racket-lang.org/reference/debugging.html

3

Does Lisp have pointers?

• A secret to understanding Lisp is to realize that
variables have values in the same way that lists
have elements

• As pairs have pointers to their elements,
variables have pointers to their values

• Scheme maintains a data structure
representing the mapping of variables to their
current values.

Variables point to their values

> (define x ‘(a b))

> x

(a b)

> (define y x)

y

(a b)

VAR VALUE

…

x

…

y

…

environment

a b

Does Scheme have pointers?

• The location in memory associated with the
variable x does not contain the list itself, but a
pointer to it.

• When we assign the same value to y, Scheme
copies the pointer, not the list.

• Therefore, what would the value of

> (eq? x y)

be, #t or #f?

Variables point to their values

> (define x ‘(a b))

> x

(a b)

> (define y x)

y

(a b)

VAR VALUE

…

x

…

y

…

environment

a b

Variables point to their values

> (define x ‘(a b))

> x

(a b)

> (define y x)

y

(a b)

> (set! y ‘(1 2))

> y

(1 2)

VAR VALUE

…

x

…

y

…

environment

a b

1 2

Length is a simple function on Lists

• The built-in function length takes a list and
returns the number of its top-level elements

• Here’s how we could implement it

(define (length L)

(if (null? L) 0 (+ 1 (length (cdr L))))

• As typical in dynamically typed languages
(e.g., Python), we do minimal type checking

– The underlying interpreter does it for us

– Get run-time error if we apply length to a non-list

http://en.wikipedia.org/wiki/Dynamic_typing#Dynamic_typing

4

Building Lists

• list-copy takes a list and returns a copy of it

• The new list has the same elements, but
contained in new pairs

> (set! x ‘(a b c))

(a b c)

> (set! y (list-copy x))

(a b c)

• Spend a few minutes to draw a box diagram
of x and y to show where the pointers point

Copy-list

• List-copy is a Lisp built-in (as copy-list) that
could be defined in Scheme as:

(define (list-copy s)

(if (pair? s)

(cons (list-copy (car s))

(list-copy (cdr s)))

s))

•Given a non-atomic s-expression, it makes and
returns a complete copy (e.g., not just the top-
level spine)

Append
• append returns the

concatenation of
any number of lists

• Append copies its
arguments except
the last
–If not, it would have

to modify the lists
–Such side effects

are undesirable in
functional
languages

>(append ‘(a b) ‘(c d))

(a b c d)

> (append ‘((a)(b)) ‘(((c))))

((a) (b) ((c)))

> (append ‘(a b) ‘(c d) ‘(e))

(a b c d e)

>(append ‘(a b) ‘())

(a b)

>(append ‘(a b))

(a b)

>(append)

()

Append

• The two argument version of append could be
defined like this

(define (append2 s1 s2)
(if (null? s1)

s2
(cons (car s1)

(append2 (cdr s1) s2))))

• Notice how it ends up copying the top level list
structure of its first argument

Visualizing Append
> (load "append2.ss")

> (define L1 '(1 2))

> (define L2 '(a b))

> (define L3 (append2 L1 L2))

> L3

(1 2 a b)

> L1

(1 2)

> L2

(a b)

> (require racket/trace)
> (trace append2)
> (append2 L1 L2)
>(append2 (1 2) (a b))
> (append2 (2) (a b))
> >(append2 () (a b))
< <(a b)

< (2 a b)
<(1 2 a b)
(1 2 a b)

Append does not modify its arguments. It makes
copies of all of the lists save the last.

Visualizing Append
> (load "append2.ss")

> (define L1 '(1 2))

> (define L2 '(a b))

> (define L3

(append2 L1 L2))

> L3

(1 2 a b)

> L1

(1 2)

> L2

(a b)

> (eq? (cdr (cdr L3) L2)

#f

VAR VALUE

…

L2

L1

L3

…

environment

a b

1 2

Append2 copies the top level of its
first list argument, L1

http://docs.racket-lang.org/srfi-std/srfi-1.html?q=copy-list#list-copy
http://docs.racket-lang.org/reference/pairs.html?q=append&q=apend(def._((quote._~23~25kernel)._append))

5

List access functions

• To find the element at a given position in a list
use the function list-ref (nth in CL)

> (list-ref ‘(a b c) 0)

a

• To find the nth cdr, use list-tail (nthcdr in CL)

> (list-tail ‘(a b c) 2)

(c)

• Both functions are zero indexed

List-ref and list-tail

> (define L '(a b c d))

> (list-ref L 2)

c

> (list-ref L 0)

a

> (list-ref L -1)
list-ref: expects type <non-negative
exact integer> as 2nd arg, given: -1;
other arguments were: (a b c d)

> (list-ref L 4)
list-ref: index 4 too large for list: (a b
c d)

> (list-tail L 0)

(a b c d)

> (list-tail L 2)

(c d)

> (list-tail L 4)

()

> (list-tail L 5)
list-tail: index 5 too large for list: (a b
c d)

Defining Scheme’s list-ref & list-tail
(define (mylist-ref l n)

(cond ((< n 0) (error...))
((not (pair? l)) (error...))
((= n 0) (car l))
(#t (mylist-ref (cdr l) (- n 1)))))

(define (mylist-tail l n)
(cond ((< n 0) (error...))

((not (pair? l)) (error...))
((= n 0) l)
(#t (mylist-tail (cdr l) (- n 1)))))

Accessing lists

• Scheme’s last returns the last element in a list
> (define (last l)

(if (null? (cdr l))
(car l)
(last (cdr l))))

(last ‘(a b c))
c

• Note: in CL, last returns the last cons cell (aka pair)
• We also have: first, second, third, and CxR, where x is

a string of up to four as or ds.
–E.g., cadr, caddr, cddr, cdadr, …

Member
• Member returns true, but instead of simply

returning t, its returns the part of the list
beginning with the object it was looking for.

> (member ‘b ‘(a b c))

(b c)

• member compares objects using equal?

• There are versions that use eq? and eqv?
And that take an arbitrary function

Recall: defining member

(define (member X L)

(cond ((null? L) #f)

((equal? X (car L)) L)

(#t (member X (cdr L)))))

http://docs.racket-lang.org/reference/pairs.html?q=list-ref(def._((quote._~23~25kernel)._list-ref))
http://docs.racket-lang.org/reference/pairs.html?q=list-tail&q=list-ref(def._((quote._~23~25kernel)._list-tail))
http://en.wikipedia.org/wiki/Zero-based_numbering

6

Memf
• If we want to find an element satisfying an

arbitrary predicate we use the function
memf:
> (memf odd? ‘(2 3 4))
(3 4)

• Which could be defined like:
(define (memf f l)

(cond ((null? l) #f)
((f (car l)) l)
(#t (memf f (cdr l)))))

Dotted pairs and lists

• Lists built by calling list are known as proper lists;
they always end with a pointer to null

A proper list is either the empty list, or a pair whose cdr
is a proper list

• Pairs aren’t just for building lists, if you need a
structure with two fields, you can use a pair

• Use car to get the 1st field and cdr for the 2nd
> (define the_pair (cons ‘a ‘b))
(a . b)

• Because this pair is not a proper list, it’s displayed
in dot notation

In dot notation the car and cdr of each pair are
shown separated by a period

Dotted pairs and lists

• A pair that isn’t a proper list
is called a dotted pair

Remember that a dotted pair
isn’t really a list at all, It’s a just
a two part data structure

• Doted pairs and lists that end with a dotted pair
are not used very often

• If you produce one for 331 code, you’ve probably
made an error

a b

(a . b)

Conclusion

• Simple linked lists were the only data
structure in early Lisps

– From them you can build most other data
structures though efficiency may be low

• Its still the most used data structure in Lisp
and Scheme

– Simple, elegant, less is more

• Recursion is the natural way to process lists

