9

Bottom Up
Parsing

Motivation

« In the last lecture we looked at a table
driven, top-down parser

—A parser for LL(1) grammars
* In this lecture, we’ll look a a table driven,

—A parser for LR(1) grammars

« In practice, bottom-up parsing algorithms
are used more widely for a number of
reasons

Right Sentential Forms

Right Sentential Forms
Consider this example

* We start with id+id*id

» What rules can apply to some
portion of this sequence?
—Onlyrule6: F -> id

« Are there more than one way to
apply the rule?
- Yes, three

« Apply it so the result is part of
a “right most derivation”

— If there is a derivation, there is a
right most one

— If we always choose that, we can’t
get into trouble

generation

U

m AR
*
L]

N W N =
M HHEEE
U
VIVVVVYV

o
m L]
1
-
[N ;]

F+id*id
id+id*id

Buissed

i 1 E -> E+4T

Bottom up parsing lE—>E
+ A bottom up parser looks at a Z i :i ET.*F
sentential form and selects a 5F -> (E)
contiguous sequence of 6 F -> id

symbols that matches the
RHS of a grammar rule, and E 1
replaces it with the LHS

« There might be several 1] [z i‘ TTHTE ‘3 Ll
choices, as in the E+T*id
sentential form E+T*F . E:I_Fd l:i(’

»Which one should we T+id*id
choose? E+id*id

id+id*id

Buissed

1 E -> E+4T
. 2E ->T
* Recall the definition of a 3T -> T*F
derivation and a rightmost 4T ->F
derivation > F > (E)
.) 6 F -> id
« Each of the lines is a N
(right) sentential form E
« A form of the parsing =
problem is finding the s |
correct RHS in a right- g| EfTHd e
sentential form to reduce to g = T E
get the previous right- E*%*!g
sentential form in the PO
derivation v id+idtid
b i 3
i 1 E -> E+T
Bottom up parsing lE—>E
- If the wrong one is chosen, it Tr 2 F
leads to failure 5F -> (E)
*E.g.: replacing E+T with E 3 B = gl
in E+T*F yields E+F, which p——
can’t be further reduced E*F
using the given grammar E+T*F
+The handle of a sentential E:l:% .
form is the RHS that should E+idid |2
be rewritten to yield the next T+id*id
sentential form in the right F+id*id

most derivation

id+id*id

http://en.wikipedia.org/wiki/Bottom-up_parsing

Sentential forms

1 E -> E+T
. . 2 E->T
*Think ofa senten_tlal_form D @ o oD
as one of the entriesin a 1T ->F
derivation that begins 5 F -> (E)
with the start symbol and 6 F -> id
ends with a legal sentence
«It’s like a sentence but it [E+T
may have unexpanded \ E+T*F
non-terminals _ . T 5 E+Tid
*We can also think of it g E+F*id
as a parse tree where g E+id*id
some leaves are as Ef+]7[*]u T+id*id
yet unexpanded non- FE+id*id
termlnals not yet expanded v M‘Hd*ld

Buissed

Handles
« A handle of a sentential form is a substring o such that :
— o matches the RHS of some production A -> o ; and
—replacing a by the LHS A represents a step in the

reverse of a rightmost derivation of s. 1: S -> aABe
« For this grammar, the rightmost 2: A -> Abc
derivation for the input abbcde is 3: A->b
S =>aABe => aAde => aAbcde => abbcde 4: B ->d

« The string aAbcde can be reduced in two ways:

(1) aAbcde => aAde (using rule 2)

(2) aAbcde => aAbcBe (using rule 4)
* But (2) isn’t a rightmost derivation, so Abc is the only handle.
« Note: the string to the right of a handle will only contain

terminals (why?)
8

Phrases
« A phrase is a subse- =
guence of a sentential \
form that is eventually ;
“reduced” to a single
non-terminal. e[+ [

« Asimple phrase is a

phrase that is reduced in For sentential form

[E+T*id what are the
asingle step._ phrases: E+T*id
» The handle is the left- T*id, id
most simple phrase. ssimple phrases: id
shandle: id

Phrases, simple phrases and handles

« Def: B is the handle of the right sentential form
y=apwifand only if S =>* oAw => _apw

« Def: B is a phrase of the right sentential form y if and
only if S =>*y = a,Aa, =>+ a,pa,

« Def: B is a simple phrase of the right sentential form y
ifand only if S=>*y = 0,A0, => a,fa,

« The handle of a right sentential form is its leftmost
simple phrase

« Given a parse tree, it is now easy to find the handle

« Parsing can be thought of as handle pruning

10,

mEEaaEEA

Phrases, simple phrases and handles

-> E+T
-> T
- *
-> (E) E+T
-> id E+T*F
i E+T*id
E+F*id
. E+id*id
\ T+id*id
F+id*id
. * T id id+id*id

On to shift-reduce parsing
» How to do it w/o having a parse tree in front of us?
« Look at a shift-reduce parser - the kind that yacc uses
« A shift-reduce parser has a queue of input tokens & an

initially empty stack. It takes one of 4 possible actions:

—Accept: if the input queue is empty and the start
symbol is the only thing on the stack

—Reduce: if there is a handle on the top of the stack,
pop it off and replace it with the rule’s LHS

—Shift: push the next input token onto the stack
—Fail: if the input is empty and we can’t accept

« In general, we might have a choice of (1) shift, (2) re-
duce, or (3) maybe reducing using one of several rules

+ The algorithm we next describe is deterministic

12

Shift-Reduce Algorithms

A shift-reduce parser scans input, at each step decides to:
«Shift next token to top of parse stack (along with state info) or

*Reduce the stack by POPing several symbols off the stack (& their
state info) and PUSHing the corresponding non-terminal (& state
info)

Top
Parse Stack i Input
so|x]s] . [xo]s] o] [Jar]s]

[y
]

Parser Parsing
Code Table

Shift-Reduce Algorithms

The stack is always of the form

bottom top
So X4 S1)X2 S2.(Xn)Sn
state terminal or

non-terminal

< Areduction step is triggered when we see the symbols
corresponding to a rule’s RHS on the top of the stack
bottom top
SoX18S1...TSe*S7F S8
T->T*F
SoX1S1...T Se’

14

LR parser table

LR shift-reduce parsers can be efficiently implemented
by precomputing a table to guide the processing

When to shift, when to reduce

« Key problem in building a shift-reduce parser is deciding
whether to shift or to reduce

— repeat: reduce if a handle is on top of stack, shift otherwise
— Succeed if there is only S on the stack and no input

« A grammar may not be appropriate for a LR parser because
there are conflicts which can not be resolved

« Conflict occurs when the parser can’t decide whether to:
— shift or reduce the top of stack (a shift/reduce conflict), or

— reduce the top of stack using one of two possible productions
(a reduce/reduce conflict)
« There are several varieties of LR parsers (LR(0), LR(1), SLR
and LALR), with differences depending on amount of
lookahead and on construction of the parse table

16|

Conflicts

Shift-reduce conflict: can't decide whether to shift or to reduce
» Example : "dangling else"
Stmt -> if Expr then Stmt
| if Expr then Stmt else Stmt

» What to do when else is at the front of the input?

Reduce-reduce conflict: can't decide which of several possible
reductions to make

» Example :
Stmt -> id (params)
| Expr := Expr

Expr"-.> id (params)

« Given the input a(i, j) the parser does not know whether it is a
procedure call or an‘array reference.

17

Action Gota
)mel L] + - €] ¥ | E T ¥
0| s B NERE
1 36 'amp
2 w2 | s 2 | w
) W | W p |
4 55 54 8 2 3
5 k6 ke R& R&
[55 54 9 3
55 s4 10 More on this

s il o Later. ..
f W | 5 W | w
w R | R3 R3 R3
" RS | RS RS | RS

" oy - 15

LR Table

» An LR configuration stores the state of an LR parser
(SpX1S:1X58,. .. Xy Sy 8i@is1---2,$)

* LR parsers are table driven, where the table has two
components, an ACTION table and a GOTO table

» The ACTION table specifies the action of the parser
(shift or reduce) given the parser state and next token

—Rows are state names; columns are terminals

« The GOTO table specifies which state to put on top of
the parse stack after a reduce

—Rows are state names; columns are non-terminals

18]

1: E -> E+T
2: E->T
Example 3: T -> T*F
4: T -> F
5: F -> (E)
6: F -> id
Stack Input action
0 Id + id * id § |Shift 5
0id 5 + id * id § Reduce 6 goto(0,F)
0F3 +id * id $ Reduce 4 goto(0,T)
0T 2 +id * id $ Reduce 2 goto(0,E)
0E1 + id * id § Shift 6
0OE1l+6 id * id § Shift 5
OE1+6id5 * id § Reduce 6 gc
0OE1+6F3 * id $ Reduce 4 goto(6,T)
OEL1+6TSH9 * id $ Shift 7
OE1+6T9*7 id $ Shift 5
OE1+6T09*7id5 $ Reduce 6 goto(7,E)
OE1+6T9*7F10 $ Reduce 3 goto(6,T)
OE1+6T9 $ Reduce 1 goto(0,E)
0E1 $ Accept

21

action Coto Parser actions
State id + - () 5 T F . .
Initial configuration: (SO, al...an$)
0 S5 54 2 3 P "
A T arser actions:
I inltatgoand 56 accept - - .
the ext put s w2 | 57 e " 1If ACTION[Sg, ;] = Shift S, the next configuration
id, n ..
and go to state 5 PV o ISt (SX181 %57 XSS, ajsy--2,$)
o ” ST 2 If ACTION[S,,, 3] = Reduce A - Band S =
4 : GOTOIS,,... Al, where r = the length of B, the next
s R6 | Ré R6 | Re configuration is
Gl [T e PO O L (Sg0X18; X538, X1 SmrAS, 8- -a,$)
7 |, Wstqon bk andleposd | 34 o 3 If ACTION[S,, &] = Accept, the parse is complete
8 56 s11 1. E > E4T and no errors were found
9 R1 | 57 Rl | RI 888 2T 4 If ACTIONIS,,, a] = Error, the parser calls an error-
0 e | O - RaeE handling routine
1 5: F -> (E)
" AL B © 6: F -> id ' TR 20
Action Goto 0 S$accept : E $end
1 E:E '+ T
Sae| @ |+ LS TLF YaccasalLRparser 3 .':. .
0 S5 54 2 3 4 | F
. 5 F:'('E)!
! s accept + The Unix yacc utility is ¢t
2 R2 s7 R2 R2 just such a parser. - state 0 Jacoupt : . % sand ()
3 R4 | R4 R4 | R4 + It does the heavy lifting S e
4 55 54 2| 3 of computing the table . cmE
. E goto
5 R6 | R6 R6 | R6 * To see the table infor- z &2
PR 5 s | 3 mation, use the —v flag state 1
when calling yacc, as in)
7 S5 54 10
. - o yacc -V test.y
9 Ri 7 Rl R1
F goto 5
10 R3 R3 R3 R3
n RS | RS RS RS
e e : 22 . i s v 23

