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8 Parsing

Parsing 

• A grammar describes syntactically legal strings 

in a language

• A recogniser simply accepts or rejects strings

• A generator produces strings

• A parser constructs a parse tree for a string

• Two common types of parsers:

–bottom-up or data driven

– top-down or hypothesis driven

• A recursive descent parser easily implements a 

top-down parser for simple grammars

Top down vs. bottom up parsing

• The parsing problem is to connect the root
node S with the tree leaves, the input

• Top-down parsers: starts constructing
the parse tree at the top (root) and move
down towards the leaves. Easy to implement by 
hand, but requires restricted grammars. E.g.: 

- Predictive parsers (e.g., LL(k))

• Bottom-up parsers: build nodes on the bottom of 
the parse tree first. Suitable for automatic parser 
generation, handles larger class of grammars. E.g.:

– shift-reduce parser (or LR(k) parsers)

S

A = 1 + 3 * 4 / 5

Top down vs. bottom up parsing

• Both are general techniques that can be made to work 

for all languages (but not all grammars!)

• Recall that a given language can be described by 

several grammars

• Both of these grammars describe the same language

E -> E + Num

E -> Num
E -> Num + E

E -> Num

• The first one, with it’s left recursion, causes 

problems for top down parsers

• For a given parsing technique, we may have to 

transform the grammar to work with it

• How hard is the parsing task?  How to we measure that?

• Parsing an arbitrary CFG is O(n3) -- it can take time propor-

tional the cube of the number  of input symbols

• This is bad!  (why?)

• If we constrain the grammar somewhat, we can always parse 

in linear time.  This is good!  (why?)

• Linear-time parsing

– LL parsers 

• Recognize LL grammar

• Use a top-down strategy

– LR parsers

• Recognize LR grammar

• Use a bottom-up strategy

Parsing complexity

• LL(n) : Left to right, 
Leftmost derivation, 
look ahead at most n 
symbols.

• LR(n) : Left to right, 
Right derivation, 
look ahead at most n 
symbols.

Top Down Parsing Methods

• Simplest method is a full-backup, recur-

sive descent parser

• Often used for parsing simple languages

• Write recursive recognizers (subroutines) 

for each grammar rule

–If rules succeeds perform some action 

(i.e., build a tree node, emit code, etc.)

–If rule fails, return failure.  Caller may 

try another choice or fail

–On failure it “backs up” 
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Top Down Parsing Methods: Problems

• When going forward, the parser consumes 

tokens from the input, so what happens if 

we have to back up?

– suggestions?

• Algorithms that use backup tend to be, in 

general, inefficient

– There might be a large number of possibilities 

to try before finding the right one or giving up

• Grammar rules which are left-recursive 

lead to non-termination!

Recursive Decent Parsing: Example
For the grammar:

<term> -> <factor> {(*|/)<factor>}*

We could use the following recursive
descent parsing subprogram (this one is 
written in C)

void term() { 

factor();     /* parse first factor*/

while (next_token == ast_code || 

next_token == slash_code) {

lexical();  /* get next token */

factor();   /* parse next factor */

}

} 

Problems

• Some grammars cause problems for top 
down parsers

• Top down parsers do not work with left-
recursive grammars

– E.g., one with a rule like: E -> E + T

– We can transform a left-recursive grammar into 
one which is not

• A top down grammar can limit backtracking 
if it only has one rule per non-terminal

– The technique of rule factoring can be used to 
eliminate multiple rules for a non-terminal

Left-recursive grammars

• A grammar is left recursive if it has 
rules like 

X -> X 

• Or if it has indirect left recursion, as in 

X -> A 

A -> X

• Q: Why is this a problem? 

–A: it can lead to non-terminating 
recursion!

Direct Left-Recursive Grammars

• Consider

E -> E + Num

E -> Num

• We can manually or automatically 
rewrite a grammar removing left-
recursion, making it ok for a top-down 
parser.

Elimination of Direct Left-Recursion

• Consider left-recursive 

grammar

S  S 

S -> 

• S generates strings 


 

   …

• Rewrite using right-

recursion

S   S’

S’   S’| 

• Concretely
T -> T + id

T-> id

• T generates strings
id

id+id

id+id+id   …

• Rewrite using right-
recursion
T -> id

T -> id T
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General Left Recursion

• The grammar 

S  A  | 

A  S 

is also left-recursive because

S + S  

where + means “can be rewritten in one 
or more steps”

• This indirect left-recursion can also be 
automatically eliminated (not covered)

Summary of Recursive Descent

• Simple and general parsing strategy

– Left-recursion must be eliminated first

– … but that can be done automatically

• Unpopular because of backtracking

– Thought to be too inefficient

• In practice, backtracking is eliminated by 

further restricting the grammar to allow us 

to successfully predict which rule to use

Predictive Parsers

• That there can be many rules for a non-terminal 
makes parsing hard

• A predictive parser processes the input stream 
typically from left to right

– Is there any other way to do it?  Yes for programming 
languages!

• It uses information from peeking ahead at the 
upcoming terminal symbols to decide which 
grammar rule to use next

• And always makes the right choice of which rule 
to use

• How much it can peek ahead is an issue

Predictive Parsers

• An important class of predictive parser only 
peek ahead one token into the stream

• An LL(k) parser, does a Left-to-right parse, a 
Leftmost-derivation, and k-symbol lookahead

• Grammars where one can decide which rule 
to use by examining only the next token are 
LL(1)

• LL(1) grammars are widely used in practice

– The syntax of a PL can usually be adjusted to 
enable it to be described with an LL(1) grammar

Predictive Parser

Example: consider the grammar

S  if E then S else S

S  begin S L

S  print E

L  end

L  ; S L

E  num = num

An S expression starts either with

an IF, BEGIN, or PRINT token,

and an L expression start with an

END or a SEMICOLON token, 

and an E expression has only one

production.

Remember…

• Given a grammar and a string in the language defined 

by the grammar …

• There may be more than one way to derive the string 

leading to the same parse tree

– It depends on the order in which you apply the rules

– And what parts of the string you choose to rewrite next

• All of the derivations are valid

• To simplify the problem and the algorithms, we  often 

focus on one of two simple derivation strategies

– A leftmost derivation

– A rightmost derivation
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LL(k) and LR(k) parsers

• Two important parser classes are  LL(k) and LR(k)

• The name LL(k) means:

– L: Left-to-right scanning of the input

– L: Constructing leftmost derivation

– k: max # of input symbols needed to predict parser action

• The name LR(k) means:

– L: Left-to-right scanning of the input

– R: Constructing rightmost derivation in reverse

– k: max # of input symbols needed to select parser action

• A LR(1) or LL(1) parser never need to “look ahead” 

more than one input token to know what parser 

production rule applies

Predictive Parsing and Left Factoring

• Consider the grammar
E  T + E

E  T

T  int

T  int * T

T  ( E )

• Hard to predict because

– For T, two productions start with int

– For E, it is not clear how to predict which rule to use

• Must left-factor grammar before use for predictive 

parsing

• Left-factoring involves rewriting rules so that, if a non-

terminal has > 1 rule, each begins with a terminal

Even if left recursion is 

removed, a grammar 

may not be parsable

with a LL(1) parser

Left-Factoring Example

E  T + E

E  T

T  int

T  int * T

T  ( E )

E  T X

X  + E

X  

T  ( E )

T  int Y

Y  * T

Y  

Add new non-terminals X and Y to factor out 

common prefixes of rules

For each non-terminal the 

revised grammar, there is either 

only one rule or every rule 

begins with a terminal  or 

Using Parsing Tables

• LL(1) means that for each non-terminal and token 
there is only one production

• Can be represented as a simple table

– One dimension for current non-terminal to expand

– One dimension for next token

– A table entry contains one rule’s action or empty if error

• Method similar to recursive descent, except

– For each non-terminal S

– We look at the next token a

– And chose the production shown at table cell [S, a]

• Use a stack to keep track of pending non-terminals

• Reject when we encounter an error state, accept when 
we encounter end-of-input  

LL(1) Parsing Table Example

Left-factored grammar
E  T X               

X  + E | 

T  ( E ) | int Y     

Y  * T | 

int * + ( ) $

E T X T X

X + E  

T int Y ( E )

Y * T   

The LL(1) parsing table

End of input symbol

LL(1) Parsing Table Example

•Consider the [E, int] entry

– “When current non-terminal is E & next input int, use production  E T X”

– It’s the only production that can generate an int in next place

•Consider the [Y, +] entry

– “When current non-terminal is Y and current token is +, get rid of Y”

– Y can be followed by + only in a derivation where  Y

•Consider the [E, *] entry

– Blank entries indicate error situations

– “There is no way to derive a string starting with * from non-terminal E”

int * + ( ) $

E T X T X

X + E  

T int Y ( E )

Y * T   

E  T X               

X  + E | 

T  ( E ) | int Y     

Y  * T | 

http://en.wikipedia.org/wiki/LL_parser
http://en.wikipedia.org/wiki/Canonical_LR_parser
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LL(1) Parsing Algorithm

initialize stack = <S $> and next 
repeat

case stack of
<X, rest>  : if T[X,*next] = Y1…Yn

then stack  <Y1… Yn rest>;
else  error ();   

<t, rest>   : if t == *next ++ 
then  stack  <rest>;
else error ();

until stack == < >

(1) next points to the next input token 

(2) X matches some non-terminal

(3) t matches some terminal

where:

LL(1) Parsing Example

Stack            Input              Action

E $           int * int $        pop();push(T X)

T X $         int * int $        pop();push(int Y)

int Y X $     int * int $        pop();next++

Y X $         * int $            pop();push(* T)

* T X $       * int $            pop();next++

T X $         int $              pop();push(int Y)

int Y X $     int $              pop();next++;

Y X $         $                  pop()

X $           $                  pop()

$             $                  ACCEPT!

int * + ( ) $

E T X T X

X + E  

T int Y ( E )

Y * T   

E  TX               

X  +E

X  

T  (E)

T  int 

Y     

Y  *T

Y  

Constructing Parsing Tables

• No table entry can be multiply defined

• If A  , where in the line of A do we place 
 ?

• In column t where t can start a string derived 
from 

•  * t 

• We say that t  First()

• In the column t if  is  and t can follow an A

• S *  A t 

• We say t  Follow(A)

Computing First Sets

Definition: First(X) = {t| X*t}{|X*}

Algorithm sketch (see book for details):

1. for all terminals t do   First(t)  { t } 

2. for each production X   do  First(X)  {  }

3. if X  A1 … An  and    First(Ai), 1  i  n  
do add First() to First(X) 

4. for each X  A1 … An s.t.   First(Ai), 1  i 
n do add  to First(X) 

5. repeat steps 4 and 5 until no First set can be 
grown

First Sets. Example

Recall the grammar 

E  T X                               X  + E | 

T  ( E ) | int Y                   Y  * T | 

First sets

First( ( ) = { ( }            First( T ) = {int, ( }

First( ) ) = { ) }            First( E ) = {int, ( }

First( int) = { int }       First( X ) = {+,  }

First( + ) = { + }            First( Y ) = {*,  }

First( * ) = { * }

Computing Follow Sets

• Definition:

Follow(X) = { t | S *  X t  }

• Intuition

– If S is the start symbol then $  Follow(S)

– If X  A B then First(B)  Follow(A) and 

Follow(X)  Follow(B)

– Also if B *  then Follow(X)  Follow(A)
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Computing Follow Sets

Algorithm sketch:

1. Follow(S)   { $ }

2. For each production A   X 

• add  First() - {}  to  Follow(X) 

3. For each A   X  where   First() 

• add  Follow(A)  to  Follow(X)

• repeat step(s) ___ until no Follow set 
grows

Follow Sets. Example

• Recall the grammar 

E  T X                               X  + E | 

T  ( E ) | int Y                   Y  * T | 

• Follow sets

Follow( + ) = { int, ( }    Follow( * ) = { int, ( } 

Follow( ( ) = { int, ( }     Follow( E ) = {), $} 

Follow( X ) = {$, ) }       Follow( T ) = {+, ) , $}

Follow( ) ) = {+, ) , $}     Follow( Y ) = {+, ) , $}

Follow( int) = {*, +, ) , $}

Constructing LL(1) Parsing Tables

• Construct a parsing table T for CFG G

• For each production  A   in G do:

– For each terminal t  First() do

• T[A, t] = 

– If   First(), for each t  Follow(A) do

• T[A, t] = 

– If   First() and $  Follow(A) do

• T[A, $] = 

Notes on LL(1) Parsing Tables

• If any entry is multiply defined then G is not 

LL(1)

• Reasons why a grammar is not LL(1) include

– G is ambiguous

– G is left recursive

– G is not left-factored

• Most programming language grammars are 

not strictly LL(1)

• There are tools that build LL(1) tables

Bottom-up Parsing

• YACC uses bottom up parsing. There are 

two important operations that bottom-up 

parsers use: shift and reduce

– In abstract terms, we do a simulation of a Push 

Down Automata as a finite state automata

• Input: given string to be parsed and the set 

of productions.

• Goal: Trace a rightmost derivation in 

reverse by starting with the input string and 

working backwards to the start symbol

http://en.wikipedia.org/wiki/Pushdown_automaton

