7

Lexical Analysis
& Finite Automata

RE and Finite State Automaton (FA)

* Regular expressions are a declarative way to describe the tokens
— Describes what is a token, but not how to recognize the token

* FAs are used to describe how the token is recognized
— FAs are easy to simulate in a programs

* There is a 1-1 correspondence between FAs & regular expressions

— A scanner generator (e.g., lex) bridges the gap between regular expressions
and FAs.

String stream

Scanner generator

Tokens

Finite Automata (FA)

« FA also called Finite State Machine (FSM)
— Abstract model of a computing entity.
— Decides whether to accept or reject a string.

— Every regular expression can be represented as a FA and vice
versa

» Two types of FAs:

— Non-deterministic (NFA): Has more than one alternative action
for the same input symbol.

— Deterministic (DFA): Has at most one action for a given input
symbol.

« Example: how do we write a program to recognize the Java
keyword “int”?

—(-(0@
ottt

NSCIL ool £1530, "

Transition Diagram

« FA can be represented using transition diagram.

« Corresponding to FA definition, a transition diagram has:
— States represented by circles;
— An Alphabet (Z) represented by labels on edges;

— Transitions represented by labeled directed edges between states. The
label is the input symbol;

— One Start State shown as having an arrow head;
— One or more Final State(s) represented by double circles.

« Example transition diagram to recognize (alb)*abb

N
CECECEo
b

ASCax ool 15500, "

Simple examples of FA

a sian.{)a.

a
a* start_,
a
sl.arl.(i) ay @
at

Na ab
o . ‘
* b

Procedures of defining a DFA/NFA

Defining input alphabet and initial state
Draw the transition diagram
» Check

— Do all states have out-going arcs labeled with all the input
symbols (DFA)

— Any missing final states?
— Any duplicate states?
— Can all strings in the language can be accepted?
— Are any strings not in the language accepted?
» Naming all the states

« Defining (S, Z, 8, q,, F)

Example of constructing a FA

» Construct a DFA that accepts a language L over the
alphabet {0, 1} such that L is the set of all strings with
any number of “0”s followed by any number of “1”s.

» Regular expression: 0*1*
« 2={0,1}
Draw initial state of the transition diagram

Start —Q

Example of constructing a FA

« Draft the transition diagram 0
Start—O 0 1

o Is“111” accepted?
* The leftmost state has missed an arc with input “1”

P 1
o023
< -

NSCIL ool £1530, "

Example of constructing a FA

* Is “00” accepted?

* The leftmost two states are also final states
— First state from the left: ¢ is also accepted

— Second state from the left:
strings with “0”’s only are also accepted

0 1
san—(0)- 020
_/1'

Example of constructing a FA

+ The leftmost two states are duplicate
— their arcs point to the same states with the same symbols

0 1
start—(QO) @)

» Check that they are correct
— All strings in the language can be accepted
» g, the empty string, is accepted
» strings with “0”’s / “1”s only are accepted
— No strings not in language are accepted
» Naming all the states 0 1

Start 1

How does a FA work

« NFA definition for (ab)*abb N

- $={q0,q1,02,43}
- x={ab}
— Transitions: move(q0,a)={q0, q1}, move(q0,b)={q0}, °
— s0=q0
- F={a3}
« Transition diagram representation
— Non-determinism:
» exiting from one state there are multiple edges labeled with same symbol, or
» There are epsilon edges.
— How does FA work? Input: ababb
move(0,a) =0
move(0, b) = 0
move(0,a)=1

move(1, b) = 2
move(2,b) =3

move(0, a) = 1
move(, b) =2
move(2, a) = ? (undefined)

REJECT ! ACCEPT!

FA for (alb)*abb

A
49— =(@-©
— What does it mean that a stri?\g is accepted by a FA?

An FA accepts an input string x iff there is a path from start to a
final state, such that the edge labels along this path spell out x;

— A path for “aabb™ Q0->2 q0>2q1->Yq2->" g3
— Is “aab” acceptable?
Q0->2 q0>2ql->Pq2
Q0->2 q0>2q0~>*q0
»Final state must be reached;
»In general, there could be several paths.
— Is “aabbb” acceptable?
Q0->2 q0>2ql>Pg2->P g3
»Labels on the path must spell out the entire string.

Transition table

+ A transition table is a good way to implement a FSA

— One row for each state, S
— One column for each symbol, A

— Entry in cell (S,A) gives set of states can be reached from state S on

input A

» A Nondeterministic Finite Automaton (NFA) has at least one

cell with more than one state

+ A Deterministic Finite Automaton (DFA) has a singe state in

NSCan

every cell

(alb)*abb

INPUT

STATES a

>Q0 {90, q1}

q0

Q1

Q2

q3

Q3

15

DFA (Deterministic Finite Automaton)

+ A special case of NFA where the transition function maps the
pair (state, symbol) to one state.

— When represented by transition diagram, for each state S and symbol a, there
is at most one edge labeled a leaving S;

— When represented by transition table, each entry in the table is a single state.
— There are no e-transitions

» Example: DFA for (alb)*abb

INPUT
STATES a b
90 a1 90
a1 qi a2
a2 q1 a3
a3 al a0

« Recall the NFA:

DFA to program

NFA is more concise, but not as easy to
implement;
In DFA, since transition tables don’t
have any alternative options, DFAs are
easily simulated via an algorithm.
Every NFA can be converted to an
equivalent DFA

What does equivalent mean?
There are general algorithms that can
take a DFA and produce a “minimal”
DFA.

— Minimal in what sense?

There are programs that take a regular
expression and produce a program _
based on a minimal DFA to recognize
strings defined by the RE.
You can find out more in 451
(automata theory) and/or 431
(Compiler design)

Minimization

DFA simulation

Scanner
generator

o |

17

Converting DFA to NFA

* When NFAs were first “invented” (Rabin/Scott, 1959), they
were also proven to be convertible to an equivalent DFA (i.e.,
one that recognizes the same formal language)

» However, it isn’t always pretty©

(Bad NFA->DFA example)

http://www.cs.wcupa.edu/~rkline/fcs/nfas.html#worst

