
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

6

Lexical Analysis

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Concepts

• Overview of syntax and semantics

• Step one: lexical analysis

–Lexical scanning

–Regular expressions

–DFAs and FSMs

–Lex

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

This is an overview of the standard
process of turning a text file into an
executable program.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lexical analysis in perspective

LEXICAL ANALYZER

– Scans Input

– Removes whitespace, newlines, …

– Identifies Tokens

– Creates Symbol Table

– Inserts Tokens into symbol table

– Generates Errors

– Sends Tokens to Parser

lexical
analyzer parser

symbol table

source
program

token

get next
token

PARSER

– Performs Syntax Analysis

– Actions Dictated by Token Order

– Updates Symbol Table Entries

– Creates Abstract Rep. of Source

– Generates Errors

LEXICAL ANALYZER: Transforms character stream to token stream

– Also called scanner, lexer, linear analysis

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Where we are

Total=price+tax;

Total = price + tax ;

Lexical analyzer

Parser

price

id + id

Expr

assignment

=
id

tax

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Basic lexical analysis terms

• Token
– A classification for a common set of strings

– Examples: <identifier>, <number>, <operator>, <open
paren>, etc.

• Pattern

– The rules which characterize the set of strings for a token

– Recall file and OS wildcards (*.java)

• Lexeme

– Actual sequence of characters that matches pattern and is
classified by a token

– Identifiers: x, count, name, etc…

– Integers: -12, 101, 0, …

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Examples of token, lexeme and pattern

if (price + gst – rebate <= 10.00) gift :=
false

Token lexeme Informal description of pattern

if if if

Lparen ((

Identifier price String consists of letters and numbers and starts with a letter

operator + +

identifier gst String consists of letters and numbers and starts with a letter

operator - -

identifier rebate String consists of letters and numbers and starts with a letter

Operator <= Less than or equal to

constant 10.00 Any numeric constant

rparen))

identifier gift String consists of letters and numbers and starts with a letter

Operator := Assignment symbol

identifier false String consists of letters and numbers and starts with a letter

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression (REs)

• Scanners are based on regular expressions that
define simple patterns

• Simpler and less expressive than BNF

• Examples of a regular expression

letter: a|b|c|...|z|A|B|C...|Z

digit: 0|1|2|3|4|5|6|7|8|9

identifier: letter (letter | digit)*

• Basic operations are (1) set union, (2)
concatenation and (3) Kleene closure

• Plus: parentheses, naming patterns

• No recursion!

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression (REs)

Example
letter: a|b|c|...|z|A|B|C...|Z

digit: 0|1|2|3|4|5|6|7|8|9

identifier: letter (letter | digit)*

letter (letter | digit) *

letter (letter | digit) *

letter (letter | digit) *

concatenation: one pattern
followed by another

set union: one pattern or
another

Kleene closure: zero or more
repetions of a pattern

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.
Regular expressions are extremely useful in many applications. Mastering them will serve you well.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular expression example revisited

• Examples of regular expression
Letter: a|b|c|...|z|A|B|C...|Z

Digit: 0|1|2|3|4|5|6|7|8|9

Identifier: letter (letter | digit)*

• Q: why it is an regular expression?

– Because it only uses the operations of union,
concatenation and Kleene closure

• Being able to name patterns is just syntactic sugar

• Using parentheses to group things is just syntactic
sugar provided we specify the precedence and
associatively of the operators (i.e., |, * and “concat”)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Another common operator: +

• The + operator is commonly used to mean “one
or more repetitions” of a pattern

• For example, letter+ means one or more letters

• We can always do without this, e.g.

letter+ is equivalent to letter letter*

• So the + operator is just syntactic sugar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Precedence of operators

In interpreting a regular expression

• Parens scope sub-expressions

• * and + have the highest precedence

• Concanenation comes next

• | is lowest.

• All the operators are left associative

• Example

– (A) | ((B)* (C)) is equivalent to A | B * C

– What strings does this generate or match?

Either an A or any number of Bs followed by a C

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Epsilon

• Sometimes we’d like a token that represents
nothing

• This makes a regular expression matching
more complex, but can be useful

• We use the lower case Greek letter epsilon, ε,
for this special token

• Example:

digit: 0|1|2|3|4|5|6|7|8|9|0

sign: +|-|ε

int: sign digit+

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Notational shorthand of regular expression
• One or more instance

– L+ = L L*

– L* = L+ | ε

– Examples

» digits: digit digit*

» digits: digit+

• Zero or one instance
– L? = L|ε

– Examples

» Optional_fraction.digits|ε

» optional_fraction(.digits)?

• Character classes
– [abc] = a|b|c

– [a-z] = a|b|c...|z

More syntatic sugar

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Regular grammar and regular expression

• They are equivalent

–Every regular expression can be expressed by regular grammar

–Every regular grammar can be expressed by regular expression

• Example

– An identifier must begin with a letter and can be followed by
arbitrary number of letters and digits.

Regular expression Regular grammar

ID: LETTER (LETTER | DIGIT)* ID  LETTER ID_REST

ID_REST  LETTER ID_REST

| DIGIT ID_REST

| EMPTY

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Formal definition of tokens

• A set of tokens is a set of strings over an alphabet

{read, write, +, -, *, /, :=, 1, 2, …, 10, …, 3.45e-3, …}

• A set of tokens is a regular set that can be defined by
using a regular expression

• For every regular set, there is a finite automaton (FA)
that can recognize it

– Aka deterministic Finite State Machine (FSM)

– i.e. determine whether a string belongs to the set or
not

– Scanners extract tokens from source code in the
same way FAs determine membership

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

FSM = FA

• Finite state machine and finite automaton are
different names for the same concept

• The basic concept is important and useful in
almost every aspect of computer science

• The concept provides an abstract way to
describe a process that
– Has a finite set of states it can be in

– Gets a sequence of inputs

– Each input causes the process to go from its current state to a
new state (which might be the same!)

– If after the input ends, we are in one of a set of accepting
state, the input is accepted by the FA

http://en.wikipedia.org/wiki/Regular_grammar
http://en.wikipedia.org/wiki/Regular_expression
http://en.wikipedia.org/wiki/Finite-state_machine
http://en.wikipedia.org/wiki/Finite-state_machine

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Example

This example shows a FA that determines whether a binary
number has an odd or even number of 0's, where S1 is an
accepting state.

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Deterministic finite automaton (DFA)

• In a DFA there is only one choice for a given input in
every state

• There are no states with two arcs that match the same
input that transition to different states

Is this a DFA?

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Deterministic finite automaton (DFA)

• If there is an input symbol that matches no arc for the
current state, the input is not accepted

• This FA accepts only binary numbers that are multiples of
three

• S0 is both the start state and an accept state.

Is this a DFA?
CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

REs can be represented as DFAs
Regular expression for a simple identifier
Letter: a|b|c|...|z|A|B|C...|Z

Digit: 0|1|2|3|4|5|6|7|8|9

Identifier: letter (letter | digit)*

*
letter

letter

0,1,2,3,4…9
• Incoming arrow identifies a single start state
• * marks a possible final (accepting) state
• State transitions enabled by input
• Arcs represent transitions and are labeled

with required input

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

REs can be represented as DFAs
Regular expression for a simple identifier
Letter: a|b|c|...|z|A|B|C...|Z

Digit: 0|1|2|3|4|5|6|7|8|9

Identifier: letter (letter | digit)*

letter

letter

0,1,2,3,4…9
• Incoming arrow identifies a single start state
• * marks a possible final (accepting) state
• State transitions enabled by input
• Arcs represent transitions and are labeled

with required input

An alternate notation
Uses a double circle
For an accepting state

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

DIG

Token Definition Example
Numeric literals in Pascal, e.g.

1, 123, 3.1415, 10e-3, 3.14e4

Definition of token unsignedNum

DIG  0|1|2|3|4|5|6|7|8|9

unsignedInt  DIG DIG*

unsignedNum 

unsignedInt

((. unsignedInt) | )

((e (+ | – | ) unsignedInt) | )

Note:
–Recursion restricted to leftmost or

rightmost position on LHS
–Parentheses used to avoid

ambiguity
– It’s always possible to rewrite by

removing epsilons ()

*

*

DIG

DIG

DIG

DIG

.

*
DIG

e

+

-
DIG

•Accepting states marked with a *
•FAs with epsilons are nondeterministic
•NFAs are harder to implement, use
backtracking

•Every NFA can be rewritten as a DFA
(gets larger, tho)

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Simple Problem

• Write a C program which reads in a character string, consisting
of a’s and b’s, one character at a time. If the string contains a
double aa, then print string accepted else print string rejected.

• An abstract solution to this can be expressed as a DFA
a

1 3+b

b

a
a, b2

Start state
An accepting state

The state transitions of a
DFA can be encoded as a
table which specifies the
new state for a given current
state and input

2 1

3 1

3 3

a b

1

2

3

input

current
state

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

#include <stdio.h>

main()

{ enum State {S1, S2, S3};

enum State currentState = S1;

int c = getchar();

while (c != EOF) {

switch(currentState) {

case S1: if (c == ‘a’) currentState = S2;

if (c == ‘b’) currentState = S1;

break;

case S2: if (c == ‘a’) currentState = S3;

if (c == ‘b’) currentState = S1;

break;

case S3: break;

}

c = getchar();

}

if (currentState == S3) printf(“string accepted\n”);

else printf(“string rejected\n”);

}

one approach
in C

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

#include <stdio.h>

main()

{ enum State {S1, S2, S3};

enum Label {A, B};

enum State currentState = S1;

enum State table[3][2] = {{S2, S1}, {S3, S1}, {S3, S3}};

int label;

int c = getchar();

while (c != EOF) {

if (c == ‘a’) label = A;

if (c == ‘b’) label = B;

currentState = table[currentState][label];

c = getchar();

}

if (currentState == S3) printf(“string accepted\n”);

else printf(“string rejected\n”);

}

using a table
simplifies the
program

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lex
• Lexical analyzer generator

– It writes a lexical analyzer

• Assumption

– each token matches a regular expression

• Needs

– set of regular expressions

– for each expression an action

• Produces

– A C program

• Automatically handles many tricky problems

• flex is the gnu version of the venerable unix tool lex.

– Produces highly optimized code

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Scanner Generators

• E.g. lex, flex

• These programs take
a table as their input
and return a program
(i.e. a scanner) that
can extract tokens
from a stream of
characters

• A very useful
programming utility,
especially when
coupled with a parser
generator (e.g., yacc)

• standard in Unix

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Lex example

lex cc foolex
foo.l foolex.c foolex

tokens

input

> flex -ofoolex.c foo.l
> cc -ofoolex foolex.c -lfl

>more input
begin

if size>10
then size * -3.1415

end

> foolex < input
Keyword: begin
Keyword: if
Identifier: size
Operator: >
Integer: 10 (10)
Keyword: then
Identifier: size
Operator: *
Operator: -
Float: 3.1415 (3.1415)
Keyword: end

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Examples

• The examples to follow can be access on gl

• See /afs/umbc.edu/users/p/a/park/pub/331/lex

% ls -l /afs/umbc.edu/users/p/a/park/pub/331/lex

total 8

drwxr-xr-x 2 park faculty 2048 Sep 27 13:31 aa

drwxr-xr-x 2 park faculty 2048 Sep 27 13:32 defs

drwxr-xr-x 2 park faculty 2048 Sep 27 11:35 footranscanner

drwxr-xr-x 2 park faculty 2048 Sep 27 11:34 simplescanner

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

A Lex Program

… definitions …

%%

… rules …

%%

… subroutines …

DIG [0-9]

ID [a-z][a-z0-9]*

%%

{DIG}+ printf("Integer\n”);

{DIG}+"."{DIG}* printf("Float\n”);

{ID} printf("Identifier\n”);

[\t\n]+ /* skip whitespace */

. printf(“Huh?\n");

%%

main(){yylex();}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Simplest Example

%%

.|\n ECHO;

%%

main()

{

yylex();

}

• No definitions
• One rule
• Minimal wrapper
• Echoes input

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

%%

(a|b)*aa(a|b)* {printf("Accept %s\n", yytext);}

[a|b]+ {printf("Reject %s\n", yytext);}

.|\n ECHO;

%%

main() {yylex();}

Strings containing aa

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Rules

• Each rule has a pattern and an action

• Patterns are regular expressions

• Only one action is performed

– The action corresponding to the pattern matched
is performed

– If several patterns match the input, the one
corresponding to the longest sequence is chosen

– Among the rules whose patterns match the same
number of characters, the rule given first is
preferred

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

Definitions

• The definitions block allows you to name a RE

• If the name appears in curly braces in a rule, the RE
will be substituted

DIG [0-9]

%%

{DIG}+ printf("int: %s\n", yytext);

{DIG}+"."{DIG}* printf("float: %s\n", yytext);

. /* skip anything else */

%%

main(){yylex();}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

/* scanner for a toy Pascal-like language */

%{

#include <math.h> /* needed for call to atof() */

%}

DIG [0-9]

ID [a-z][a-z0-9]*

%%

{DIG}+ printf("Integer: %s (%d)\n", yytext, atoi(yytext));

{DIG}+"."{DIG}* printf("Float: %s (%g)\n", yytext, atof(yytext));

if|then|begin|end printf("Keyword: %s\n",yytext);

{ID} printf("Identifier: %s\n",yytext);

"+"|"-"|"*"|"/" printf("Operator: %s\n",yytext);

"{"[^}\n]*"}" /* skip one-line comments */

[\t\n]+ /* skip whitespace */

. printf("Unrecognized: %s\n",yytext);

%%

main(){yylex();}

CMSC 331, Some material © 1998 by Addison Wesley Longman, Inc.

x character 'x'

. any character except newline

[xyz] character class, in this case, matches either an 'x', a 'y', or a 'z'

[abj-oZ] character class with a range in it; matches 'a', 'b', any letter
from 'j' through 'o', or 'Z'

[^A-Z] negated character class, i.e., any character but those in the
class, e.g. any character except an uppercase letter.

[^A-Z\n] any character EXCEPT an uppercase letter or a newline

r* zero or more r's, where r is any regular expression

r+ one or more r's

r? zero or one r's (i.e., an optional r)

{name} expansion of the "name" definition

"[xy]\"foo" the literal string: '[xy]"foo' (note escaped ")

\x if x is an 'a', 'b', 'f', 'n', 'r', 't', or 'v', then the ANSI-C
interpretation of \x. Otherwise, a literal 'x' (e.g., escape)

rs RE r followed by RE s (e.g., concatenation)

r|s either an r or an s

<<EOF>> end-of-file

Flex’s RE syntax

