
2/9/2012

1

Thinking about grammars

• Consider an expression language involving
integers 1, 2 and 3 and the + operator

• These rules make the + operator left associative

<e> ::= <int> | <e> + <int>

<int> ::= 1 | 2 | 3

• Note that using the “|” notation obscures the fact
that there are really five rules

<int> ::= 1

<int> ::= 2

<int> ::= 3

<e> ::= <int>

<e> ::= <e> + <int>

A graphical view
• Each rule is a little tree with a non-terminal as

its root and children which are non-terminals
or terminals

• Here’s how we we might visualize the
grammar using ovals for non-terminals and
strings as terminals

e

e + int

int

1

int

2

int

3

e

int

<e> ::= <int>

<e> ::= <e>+<int>

<int> ::= 1

<int> ::= 2

<int> ::= 3

Generating a string & parse tree

• Create a parse tree P consisting of
the node

• Repeat until P has no non-terminals leaf nodes

– Select a leaf node L that is a non-terminal

– Select a grammar tree T that has the same
non-terminal as its root and make a copy of it

– Replace the leaf L in P with the copy of T

e

1 + 2 + 3

Here’s an example showing the parse tree for 1+2+3

e

e + int

int

1

int

2

int

3

e

int

e

e + int e

e + int e

int int

1

int

2

int

3

the grammar rules

the parse tree

1 + 2 + 3

Here’s an example showing the derivation of
1+2+3

e

e + int

e e

e + int e

e + int

e

e + int e

e + int int

2

int

3 e

int int

1

e

e + int e

e + int e

int int

1

e

e + int e

e + int e

int

int

2 int

1

e

e + int e

e + int e

int

