
CMSC 331 Final Exam 
Section 0201 – December 18, 2000 

 
Name: _________________________________ 

 
Student ID#:_____________________________ 

 
 
You will have two hours to complete this closed book exam.  We reserve the right to assign partial credit, 
and to deduct points for answers that are needlessly wordy.   
 
 
0. Logic (0) 
 
The multiple-choice question below has only one correct answer. Which one is correct? 

(a) Answer (a) or (b)  
(b) Answer (b) or (c) 
(c) Answer (c) 

 
1. General multiple-choice questions  (20) 

 
1. Which kind of variable has the longest lifetime?  

(a) An implicitly heap-dynamic variable  
(b) A static variable  
(c) A stack-dynamic variable  
(d) A flexible variable  
(e) A fixed-length variable  
(f) A lexically scoped variable  

 
2. Which of the following is true of aliases?  

(a) An alias changes the name of something  
(b) An alias protects an existing value from being overwritten  
(c) An alias provides an alternative way of accessing something  
(d) An alias allows type inference  
(e) Aliases should be avoided if at all possible  
(f) Aliases support name equivalence of record types  

 
3. What happens in an assignment such as ``x := y''?  

(a) The address of x is modified to be the address of y  
(b) The address of y is modified to be the address of x  
(c) The object bound to y is copied and bound to x, and any previous binding of x to an 

object is lost  
(d) x and y become aliases  

 
4. Which of the following is the strictest, as applied to record types?  

(a) name equivalence  
(b) structural equivalence  
(c) subtype agreement  
(d) assignment compatibility  

 
5. Which of the following pairs of languages have type inferencing?  

(a) ML and Haskell  
(b) APL and SNOBOL  
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(c) Fortran and PL/I  
(d) LISP and Prolog 

 
6. Which of the following is true of l-values and r-vlaues 

(a) An l-value is a logical value, and an r-value is a real value. 
(b) l-values are always to the left of r-values 
(c) An l-value refers to a variable’s location while an r-value to its current value 
(d) L-values are local and r-values are relative. 
 

7. Which of the following situations will create a ``dangling pointer''?  
(a) setting an arbitrary pointer variable to ``null''  
(b) setting the CDR part of a CONS cell somewhere in the middle of a list to ``null''  
(c) freeing a block to which there still exists a live pointer  
(d) freeing a block which still contains pointers to other existing blocks  

 
8. In Pascal, one problem with union types is that 

(a) Sets are implemented as arrays and are thus inefficient. 
(b) Every union type has to be defined as an enumeration type. 
(c) Pascal does not require a type discriminator field, so that it is possible to violate type 

safety.  
(d) Type inferencing is not supported across union types. 
 

9. Which of these languages does not have a primitive data type for a character string: 
(a) Common Lisp (b) Pascal (c) Ada (d) Java 
 

10. What distinguishes a purely ``functional'' programming language from an ``imperative'' one?  
(a) There are no variables and hence no assignment operation in a purely functional language  
(b) A purely functional language lacks the ``go to'' statement, but an imperative language 

always has such a command  
(c) All subprograms must be declared with the keyword function in a purely functional 

language  
(d) There is no real difference, only a difference in the recommended coding style 

 
 
2. Advantages and disadvantages of virtual machines? (10) 
Java and other programming languages have taken the approach of executing on a virtual machine, as 
opposed to compiling to native machine code.  Explain one advantage and one disadvantage of the virtual 
machine approach. 
 



3. Relating syntax concepts (15) 
Briefly explain the relationships between the following syntax terms: parse tree, derivation, grammar, 
language, and sentence. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4. Java true/false (40) 
 

1. In Java array indices start at 0 
2. A Java class cannot contain both class and instance methods.  
3. To allow Java's automatic garbage collection mechanism reclaim the memory used by an object, 

one can assign the keyword null to an object reference.  
4. Since arrays are objects in Java they inherit all the characteristics of java.lang.Object.  
5. In Java an array's length can change at any time.  
6. In Java, a string is not a primitive data type but rather is defined as an object.  
7. There are three categories of variables in Java: class variables, instance variables, and local 

variables.  
8. A Java array declared for an object type is really an array of object references, so creating the 

array, with new, simply creates empty references with the elements of the array are all set to null.  
9. Java’s interface mechanism provides all of the benefits of multiple inheritance but does so more 

efficiently than C++.  
10. Java’s AWT gives the programmer more control over the look and feel of a graphical user 

interface than does SWING.  
11. All Java objects are descended from Java.Object. 
12. At most one public class may be defined by any one Java source file. 
13. If a public class appears in a Java source file, the name of the file and the name of the class must 

be the same. 
14. The value of a static variable cannot be changed once it has been initialized.   
15. A Java class can have only one superclass but can extend any positive number of interfaces.  
16. All objects of the same class share the same fields (if you change the field associated with one 

object all objects will see the same change.)  
17. System is a primitive data type in Java as shown by the use of System.out.println to output 

information.  
18. If a member is declared to be private, it can still be accessed by any class defined in the same 

package.  
19. The model-view-controller pattern most of the graphical routines are in the model.  
20. A Java class cannot contain both class and instance methods. 



 
5. Evaluating Java (10) 
 
What gets printed by the following Java code fragment?  
 

int  i = 3, j = 3, k; 
k = ++i + ++j + 2 ; 
System.out.println( i + "  " + j + "  " + k ); 
i = j = 3; 
k = i++ + j++ + 2 ; 
System.out.println( i + "  " + j + "  " + k ); 
i = 2, j = 3, k = 4; 
k *= i - j; 
System.out.println( k ); 
 
 
 
 
 
 

 
6. Short Java answers (10) 
 

1. Suppose that takeFinal is a method of a class named Student. The takeFinal method takes no 
arguments. Write an example of calling the method takeFinal for an instance of Student named 
aStudent.  

 
 

2. What happens when an instance of an object is no longer referenced by any variable, array entry, 
or other collection of objects in Java? 

 
 

3. In  declaration  public static final int SIZE = 100; which of the modifiers makes SIZE a class 
variable? 

 
 
 

4. In Java, new classes can be defined by extending existing classes. This is an example of: (a) 
encapsulation, (b) interface (c) polymorphism (d) inheritance (e) unification (f) objectification. 

 
 

 
5. Consider the following fragment of code:  

int field1 = 100;  
int field2 = 200;  
field2 = field1; 
field1 = filed2;       // line 4 

When the code has executed through the line with the comment "line 4", what are the values of 
field1 and field2? 

 
 
 
 
 



7. Lisp true/false (20) 
 

1. The Lisp function EQ is a test of pointers.  
2. In Lisp NIL is considered both an atom and a list.   
3. If L is bound to a non-nil list, then (eq L (reverse (reverse L))) always evaluates to T. 
4. In Lisp, the integer 0 represents logical false and any other integer represents logical  true. 
5. The only way to introduce new user-defined special forms is by using macros. 
6. The lambda special form can be used to define “anonymous” functions in Lisp.  
7. A special form is a function that does not evaluate all of its arguments or evaluates them in a non-

standard way.  
8. Lisp’s macro facility makes it easy to extend the language.  
9. Every s-expression in Lisp returns a value when evaluated.  
10. Lisp does not allow you to assign a variable more than once.  

 
8. Lisp lists (20) 
 
After evaluating (setq alpha '(1 2 3) beta '(a b c) gamma '(do re mi) empty '()), what would be the value of 
each of the following Lisp expressions. 

1. (cons alpha beta)  
 
 

2. (cons (car alpha) beta)  
 
 

3. (cons (car gamma) (cons (car beta) (cons (car alpha) empty)))  
 
 

4. (cons (car alpha) (cons (cadr beta) (cddr gamma)))  
 
 

5. (cons empty empty) 
 
 
 
Using only the bindings alpha, beta, gamma, and empty as well as the procedures cons, car, and cdr, 
construct Lisp expressions with the following values.  
 

6. ((a) (b) (c))  
 
 

7. (3 re c)  
 
 

8. ((1 2 3) (a b c) (do re mi))  
 
 

9. ((2 3) (b c) (re mi)) 
 
 

10. (3 2 1) 
 



 
 
9. More Lisp lists (10) 
 
Complete the following table to show how various Lisp lists would be represented using the standard box-
and-pointer diagramming technique.  We’ve done the first one as an example and left the next five for you. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
10. Lisp countAtoms function (15) 
 
Write a recursive Lisp function countAtoms that takes a list and returns the number on non-nil atoms in the 
list.  For example: 

> (countAtoms ‘((a b)((c)) (((e))) e)) 
5 
> (countAtoms ‘(((a)))) 
1 
> (countAtoms ‘()) 
0 
> (countAtoms ‘(a nil (b) (c nil nil)((nil)))) 
3 

 
(A B) 
 
 
 
 
 
((A)) 
 
 
 
 
 
(A (B) ((C))) 
 
 
 
 
 
(A (B (C))) 
 
 

A B 

 
 
 

A 

A 



 
11. Lisp butlast function (15) 
 
The lisp function butlast takes a list L and returns a new list with the same elements of L except for the last 
one.  For example: 
  

> (butlast '(a b c d)) 
(a b c) 
> (butlast '((a b) (c d))) 
 ((a b)) 
> (butlast '(a))  
nil 
> (butlast nil) 
nil 

 
Write two version of butlast: (a) one which only uses the function cond, if, car, cdr, and cons.  And (b) one 
that does not use recursion and uses the built-in lisp function reverse. 



 
12. Unification in Prolog (10) 
 
For each of the following pairs of Prolog terms, say whether or not the unification would succeed and, if it 
does, the variable bindings that would result..    Assume that the same variable name in two different terms 
in a given pair represents the same variable.  We’ve done the first one for you as an example. 
 

TERM1 TERM2 Unify?   Bindings 
 

foo(bar,X) foo(Y,mumble)  yes  Y=bar, X=mumble 

X  loves(john,mary). 

p(X, q(Y), r(Z))   p(r(a), q(X), r(b)) 

loves(john, X) loves(Y,Y) 

and(father(P1, P2), and(father(X, john), 

        brother(P1, P3))        brother(john, john))   

foo(X)  X 

[X, Y | Z]  [a, b, c, d, e, f, g] 

[ ]  X 

[X, Y]   [a, b | Z] 

A + B - C  '+'(1, '-'(2, 3)) 

2+3  3+2 

 
13. Prolog predicate hasDuplicates (10) 
 
Write a predicate hasDuplicates/1 that takes a single argument that is a list returns true if the list contains 
multiple occurrences of some top-level element.  You can assume that the predicate is always called with 
an instantiated argument.  The hasDuplicates/1 predicate should work like this:  

?- hasDuplicates([a,b,a,c]). 
yes. 
?- hasDuplicates([]). 
No. 
?- hasDuplicates([a,b,[a],c]). 
No. 

Hint: try defining and using the auxiliary predicate isIn/2 that is a variation of member/2: 
isIn(X,[X|_]). 
isIn(X,[_|Tail]) :- isIn(X,Tail). 
 



 
14. Prolog mystery predicate (15) 
 
Assuming append has the usual definition, consider the following mystery predicate: 
 

p([ ],[ ]). 
p([A|B], C)  :-  p(B, D),  append(D, [A], C). 

 
(a) [10] Describe what would happen for each of the following queries in terms of the kinds of errors that 

would result or the solutions(s) that would be found.  If more than one solution would be found, 
characterize them all. 

 
• p([a,b,c,d,e],X). 

 
 
 
 
 

• p(X,[a,b,c,d,e]) 
 
 
 
 
 

• p(X,Y). 
 
 
 
 
(b) [5] Describe what this predicate does in a simple sentence.  
 
 
 
 
 
 
 
 
 
 
 
 
15. Prolog true/false (20) 
 

(a) Prolog is a strongly typed language. 
(b) The scope of a variable in Prolog is a single clause (i.e., a fact or rule) or a single query.  
(c) Unification is transitive (i.e., assuming that t1, t2 and t3 are arbitrary Prolog terms, if t1 

unifies with t2 and t2 unifies with t3 then t1 must unify with t3.  
(d) The lack of explicit memory allocation and deallocation functions in Prolog is evidence that it 

performs automatic memory management, e.g. using garbage collection.  
(e) One of Prolog strengths is its use of fuzzy logic.  
(f) Terms are to Prolog as s-expressions are to Lisp. 
(g) The empty list in Prolog is represented by the atomic symbol NIL.  
(h) A variable in Prolog must start with either an upper-case letter or an underscore (_).  
(i) All local variables must be declared before they are used in Prolog.  
(j) A Prolog variable can only be assigned to a value once. 


