
practice

42 COMMUNICATIONS OF THE ACM | JUNE 2014 | VOL. 57 | NO. 6

programmers). In short, each of these
examples uses a Domain-Specific
Language (DSL).

A DSL is a special-purpose lan-
guage, designed to encapsulate pos-
sible computations in a specific
domain. In the earlier examples of
MATLAB, SQL, Verilog, and spread-
sheets, the domains would be scien-
tific modeling, database queries and
updates, hardware circuits, and fi-
nancial computations, respectively.
Considering SQL specifically, there
is nothing it does that could not be
done in Java or C, or any other gener-
al-purpose programming language.
SQL simply bundles the actions need-
ed to interact with a database into a

THERE ARE MANY ways to give instructions to a computer:
an electrical engineer might write a MATLAB program;
a database administrator might write an SQL script;
a hardware engineer might write in Verilog; and an
accountant might write a spreadsheet with embedded
formulas. Aside from the difference in language used in
each of these examples, there is an important difference
in form and idiom. Each uses a language customized to
the job at hand, and each builds computational requests
in a form both familiar and productive for programmers
(although accountants may not think of themselves as

Domain-
Specific
Languages
and Code
Synthesis
Using Haskell

DOI:10.1145/2605205

 Article development led by
 queue.acm.org

Looking at embedded DSLs.

BY ANDY GILL

http://dx.doi.org/10.1145/2605205

JUNE 2014 | VOL. 57 | NO. 6 | COMMUNICATIONS OF THE ACM 43

I
L

L
U

S
T

R
A

T
I

O
N

 B
Y

 A
L

I
C

I
A

 K
U

B
I

S
T

A
/A

N
D

R
I

J
 B

O
R

Y
S

 A
S

S
O

C
I

A
T

E
S

on Engineering of Reconfigurable Sys-
tems and Algorithms.10

Haskell is all about types. Types in
Haskell, like those in other languages,
are constraining summaries of struc-
tural values. For example, in Haskell
Bool is the type of the values True
and False; Int is the type of machine-
sized words; Double is the type of
double-precision IEEE floating-point
values; and this list goes on in the same
manner as C, C++, Java, and other tra-
ditional languages. All of these type
names in Haskell start with an upper-
case letter.

On top of these basic types, Haskell
has two syntactic forms for expressing
compound types. First, pairs, triples,

usable and productive package, and
the language becomes the interface
to communicate requests to the data-
base engine.

There are two fundamental types
of DSLs. The first is a first-class lan-
guage, shown in Figure 1(1), with its
own compiler or interpreter, and it is
often used in its own ecosystem. All
the examples mentioned so far fall
into this category. The primary differ-
ence between the SQL DSL and, for ex-
ample, Java is one of scope and focus,
although sometimes DSLs grow to be
as large as general-purpose languages.

The other class of DSL is a language
embedded in a host language, as shown
in Figure 1(2). Such languages can have

the look and feel of being their own lan-
guage, but they leverage the host lan-
guage’s existing ecosystem and initial
semantics. This article is concerned
with this second class of DSLs.

Haskell Primer
An embedded DSL (EDSL) is a language
inside a language. Haskell,17 the pre-
mier pure functional programming
language, is a great host for EDSLs be-
cause of flexible overloading, a power-
ful type system, and lazy semantics.
This section provides a terse introduc-
tion to Haskell, sufficient to make this
article self-contained. It is an extended
version of the Haskell primer I gave in
2011 at the International Conference

practice

44 COMMUNICATIONS OF THE ACM | JUNE 2014 | VOL. 57 | NO. 6

and Just:

data Maybe where
 Nothing :: Maybe a
 Just :: a -> Maybe a

Nothing is a Maybe of anything;
Just, with an argument, is a Maybe
with the type of the argument. These
constructors can be used to construct
and deconstruct structures, but there
is never any updating; all structures in
Haskell are immutable.

It is possible to give specific types
extra powers, such as equality and com-
parison, using the class-based over-
loading system. The Maybe type, for
example, can be given the ability to test
for equality, using an instance:

instance Eq a => Eq (Maybe a)
 where
 Just a == Just b = a == b
 Nothing == Nothing = True
 _ == _ = False

This states that for any type that can
be tested for equality, you can also
check Maybe of the same type. You
take the Maybe apart, using pattern
matching on Just, to check the in-
ternal value.

In Haskell, side effects such as
writing to the screen or reading the
keyboard are described using a do-
notation:

main :: IO ()
main = do
 putStrLn “Hello”
 xs <- getLine
 print xs

In this example a value called
main uses the do-notation to de-
scribe an interaction with a user. Ac-
tually, the do-notation captures this
as a structure called a monad; purity
is not compromised. More detailed
information is available on how the
do-notation and monads can provide
an effectful interface inside a pure
language such as Haskell.18 For the
purposes of this article, do-nota-
tion is a way of providing syntax and
structure that looks like interaction.
There are many tutorials on Haskell;
the Haskell website, (http://haskell.
org) is a good starting point for fur-
ther reading.

and larger structures can be written
using tuple-syntax, comma-separat-
ed types inside parentheses. Thus,
(Int,Bool) is a structure with both an
Int and a Bool component. Second,
lists have a syntactic shortcut, using
square brackets. Thus, [Int] is a list
of Int.

Haskell also has other container
types. A container that may contain
one Int has the type Maybe Int,
which is read Maybe of Int. These con-
tainer names also start with upper-
case letters.

Types can be nested to any depth.
For example, you can have a [(Maybe
(Int,Bool))], read as list of Maybe of
(Int and Bool).

Polymorphic values are expressed
using lowercase letters and play a
similar role to void* pointers in C and
polymorphic arguments in the Java
generics facility. These polymorphic
values can have constraints expressed
over them, using the Haskell equiva-
lent of an object hierarchy.

Finally, a function is written using
an arrow from argument type to result
type. Thus, in Haskell, a function that
takes a list and returns a list is written
as: [a] -> [a].

Here is an example of a Haskell
function:

sort :: (Ord a) => [a] -> [a]
sort [] = []
sort (x:xs) = sort before
 ++ [x] ++ sort after
 where
 before = filter (<= x) xs
 after = filter (> x) xs

This function sorts a list using a variant
of quicksort in which the pivot is the
first element of the list:

 ˲ The first line is the type for sort.
This is ∀a, such that a can be ordered
(admits comparisons like <=); the func-
tion takes and return a list of such a’s.

 ˲ The second line says that an empty
list is already sorted.

 ˲ The remaining lines state that a
non-empty list can be sorted by taking
the first and rest of the list (called x and
xs, respectively), sorting the values be-
fore this pivot and after this pivot, and
concatenating these intermediate val-
ues together.

 ˲ Finally, intermediate values can be
named using the where syntax; in this
case the values of before and after.

Haskell is a concise and direct lan-
guage. Structures in Haskell are de-
noted using types, constructed and
deconstructed, but never updated. For
example, the Maybe type can be de-
fined using two constructors, Nothing

Figure 1. Types of domain-specific languages.

(1)

(2a) (2b)

(2)

Stand
Alone
DSLs

Domain-Specific
Languages

Shallow
Embedded

DSLs

Deeply
Embedded

DSLs

Embedded
Domain-Specific

Languages

Figure 2. A counter in Kansas Lava.

counter :: (Rep a, Num a) => Signal Bool -> Signal Bool -> Signal a
counter restart inc = loop
 where reg = register 0 loop
 reg’ = mux2 restart (0,reg)
 loop = mux2 inc (reg’ + 1, reg’)

practice

JUNE 2014 | VOL. 57 | NO. 6 | COMMUNICATIONS OF THE ACM 45

Embedded DSLs
An EDSL is a library in a host language
that has the look, feel, and semantics
of its own language, customized to a
specific problem domain. By reusing
the facilities and tools of the host lan-
guage, an EDSL considerably lowers the
cost of both developing and maintain-
ing a DSL. Benefiting from Haskell’s
concise syntax, the Haskell communi-
ty—and the functional programming
community in general—has taken the
ideas of EDSLs and developed a large
number of DSLs that provide higher-
level interfaces and abstractions for
well-understood systems. What fol-
lows are two examples of EDSLs: one
for automatically generating test cases
for software testing; and a second for
specifying hardware-circuit behaviors.

Example EDSL: QuickCheck Prop-
erties. Consider the challenge of writ-
ing test cases—or more specifically,
writing the properties that test cases
need to satisfy:

--The reverse of a reverse’d
--list is itself
prop _ reverse _ twice
 (xs :: [Int])
 = reverse (reverse xs) == xs

In this example, prop_reverse_twice
is a regular Haskell function that
takes a list of Int and returns a Bool-
ean, based on the validity of what is
being proposed—specifically, that
two reverses cancel each other out.
Here is the neat part: prop_reverse_
twice is also a domain-specific state-
ment and as such can be considered
a sublanguage inside Haskell. This
style of using functions (in this case,
functions with names prefixed with
prop_ , taking a number of typed ar-
guments, and returning a condition-
al) is a small language. The property
written in Haskell is also an EDSL for
properties, called QuickCheck.4 This
EDSL can be run using a function also
called quickCheck:

GHCi>quickCheck prop _ reverse
_ twice
+++ OK, passed 100 tests.

By running quickCheck with this
explicit and specific property, the EDSL
executes inside Haskell. The quick-
Check function generates 100 test cas-

es for the property and executes them
on the fly. If they all hold, then the sys-
tem prints a message reflecting this.
The test cases are generated using the
type class system—QuickCheck gives
specific types the power of test-case gen-
eration—and the quickCheck func-
tion uses this to generate random tests.

As an example of an incorrect prop-
erty, consider this property for re-
verse.

prop _ reverse (xs::[Int]) ys =
 reverse xs ++ reverse ys
 == reverse (xs ++ ys)

This states that the reverse of two dis-
tinct lists is the same as the reverse of
both lists appended together, but this
property is false.

GHCi>quickCheck prop _ reverse
Falsifiable, after 5 tests:
[0]
[2,-2]

It turns out that this sort of mini-
language is really useful in practice.
Despite the simplicity of how Haskell
is being used, the QuickCheck EDSL
provides a way of thinking about and
directly expressing properties. It has
additional functionality, including
the ability to generate random func-
tion arguments, to control the distri-
bution of the random test cases, and
to state preconditions of a property.
From this DSL, many other implemen-

tations of these ideas have been con-
structed. There is even a Swedish com-
pany, QuviQ, that sells a QuickCheck
for the concurrent programming lan-
guage Erlang.

Example EDSL: Kansas Lava. To
take another example, consider de-
scribing hardware. Hardware descrip-
tion languages and functional lan-
guages have long enjoyed a fruitful
partnership. Lava is the name given
to a class of Haskell DSLs that imple-
ment a function-based version of
the hardware description language
Ruby.12,13 Not to be confused with the
modern programming language of the
same name, Ruby was based on rela-
tions, which was in turn inspired by
the seminal work in µFP.21

Kansas Lava11 is a Haskell-hosted
DSL that follows the Lava line of re-
search. It is a language for expressing
gate-level circuits. Haskell abstrac-
tions allow the programmer to work
at a slightly higher level of abstrac-
tion, where the model is one of recur-
sive components communicating via
synchronized streams. Kansas Lava
has been used for the generation of
high-performance circuits for telem-
etry decoders, though the model used
is general.

As an example of Kansas Lava, con-
sider Figure 2: This circuit connects
two multiplexers (mux2), an adder,
and a register to give a circuit that
counts the number of clocked pulses
on a signal inc. The circuit takes two

Figure 3. Schematic Kansas Lava parity counter.

inc

restart

Reg
Mux

0
+ 1

outputMux

Figure 4. Running Kansas Lava as a simulation.

GHCi> toSeq (cycle [True,False,False])
True : False : False : True : False : False : True : False : False : ...
GHCi> counter low (toSeq (cycle [True,False,False]))
1 : 1 : 1 : 2 : 2 : 2 : 3 : 3 : 3 : ...

practice

46 COMMUNICATIONS OF THE ACM | JUNE 2014 | VOL. 57 | NO. 6

grammable gate arrays)? Can EDSLs
be used to generate code for embed-
ded processors or GPUs? Such an
ability—to synthesize external solu-
tions—would be extremely useful.
The EDSL idiom can be extended to
do so, with significant caveats. The
remainder of this article is about
how to capture and offshore work
from inside an EDSL, what this capa-
bility can be used for, and what the
limitations are.

Deeply Embedded Domain-
Specific Languages
EDSLs are simply a way of thinking
about a library of provided functions,
often called combinators, because
they combine their arguments into
terms inside the DSL. In the previous
Lava example, the register com-
binator takes an initial value—and
an incoming stream of values—and
provides the new stream, delayed by
a single cycle, with the initial value
occupying the initial cycle. Criti-
cally, register is compositional; it
combines smaller parts of the DSL to
make larger solutions. If a DSL fol-
lows this composability carefully by
design, an important alternative im-
plementation is possible.

The most common flavor of EDSL
is one that uses so-called shallow
embedding, as seen in Figure 1(2a),
where values are computed directly.
The result of a computation in a shal-
low EDSL is a value. All the examples
so far are shallow. There is another
class of EDSLs, however: specifically,
those that use a deep embedding
to build an abstract syntax tree, as
shown in Figure 1(2b). The result of a
computation inside a deeply embed-
ded DSL (deep EDSL) is a structure,
not a value, and this structure can be
used to compute a value or be cross-
compiled before being evaluated.7
Such deep EDSLs follow the compos-
ability mantra pedantically, by design
and mandate.

Historically, EDSLs have been shal-
low—simply a way of structuring an
API for a library. Deep EDSLs, howev-
er, have the ability to stage code—that
is, executing a program can generate
another program, much like the well-
known YACC DSL, but at the cost of
significantly restricting what forms
of the DSL can generate valid output.

clocked signals and returns a clocked
signal that explicitly operates using
the same clock, because they share
the same type. The use of arithmetic
is understated, but simply uses (via
overloading) the standard syntax for
addition; the Num constraint allows
this. Figure 3 illustrates the circuit in-
tended for this description.

You can simulate sequential cir-
cuits with the same directness as the
combinational functions invoked (see
Figure 4).

As well as basic signal types, you can
build circuits that operate on Haskell
functions directly, provided the do-
main of the function is finite. The Rep
capability is used to signify that you
can enumerate all possible represent-
able values in a type, giving the fun-
Map function:

funMap :: (Rep a, Rep b)
 => (a -> Maybe b)
 -> Signal a
 -> Signal b

The generated circuit is implement-
ed using a ROM, and you can gener-
ate control logic directly in terms of
Haskell functions and data structures.
As an example, consider a small ROM
that stores the square of a value:

squareROM :: (Num a, Rep a)
 => Signal a -> Signal a
squareROM = funMap
 (\ x -> return (x * x))

In this way, direct Haskell functions
can be lifted into the Signal world.
Notice how the squareROM function
is not specific about size but is com-
pletely generic, requiring only the
type of the argument stream to be rep-
resentable as a number.

The clock-squaring ROM can now
be used at specific types. For exam-
ple, at eight-bit you can generate the
following:

GHCi> squareROM (toSeq [0,1..] ::
 Signal Word8)
 0 : 1 : 4 : 9 : 16 : 25 : 36 : 49 : 64 :
 81 : 100 : 121 : 144 : 169 : 196 :
 225 : 0 : ...

This level of circuit specification has
been used to great effect in many Lava
and Lava-like languages. One notable
instance is Hawk,15 a Lava-like EDSL
that was used to specify the entire mi-
cro-architecture of the Pentium Pro,
including the super-scaler design,
and register bypass capabilities.

Now, if DSLs are so powerful as
an idiom for library design, then why
have they not taken over? As a means
for expressing things that can be
simulated, EDSLs are an invaluable
design pattern; however, not every-
thing is a simulation. What if you
wanted to use an EDSL to express
something you want to run some-
where else, not inside the Haskell
system? Can Lava be used to generate
circuits to be run on FPGAs (field-pro-

Figure 5. Shallow and deep embedding of arithmetic.

de
ep

7

7

Syntax

1

2 3

+

*

Structure

Add

Lit 1

Lit 2 Lit 3

Mul

shallow

same value

run export

- - - - -
- - -
- -
- - - -
- - -

practice

JUNE 2014 | VOL. 57 | NO. 6 | COMMUNICATIONS OF THE ACM 47

There are a growing number of deep
EDSLs, along with a body of research
around their form and limitations.
The unifying theme is that deep ED-
SLs can be pragmatic, productive, and
useful.

This section investigates the basic
structure of a deep EDSL compared
with a shallow EDSL, and looks at
three pragmatic tricks for improving
the usefulness of deep EDSLs.

Building a deep EDSL. A deeply em-
bedded DSL exposes its own composi-
tion and structure. Rather than using
functions operating directly on values
(a shallow DSL), a deep DSL builds a
structure, then allows some secondary
agent to provide interpretation of this
structure. To make this idea concrete,
consider a DSL for arithmetic, with
addition, subtraction, multiplication,
and constants. For a shallow embed-
ding, running this DSL is trivial; you
just use the built-in arithmetic. A
deep embedding is where things get
interesting. Consider a data type for
our arithmetic:

data Expr where
 Lit :: Integer -> Expr
 Add :: Expr -> Expr -> Expr
 Sub :: Expr -> Expr -> Expr
 Mul :: Expr -> Expr -> Expr
 deriving Eq

Now overload the arithmetic to use
this Expr data type; in Haskell, Num is
the overloading for integral arithmetic:

instance Num Expr where
 fromInteger n = Lit n
 e1 + e2 = Add e1 e2
 e1 - e2 = Sub e1 e2
 e1 * e2 = Mul e1 e2

By building expressions of type
Expr, you can observe the structure of
the computation:

GHCi> 1 + 2 * 3 :: Expr
Add (Lit 1) (Mul (Lit 2) (Lit 3))

This is profound, and it is the key
idea that makes deep embeddings
work. You can write an expression and
extract a tree of what to do, not a direct
result. With deep embeddings, it is
common also to write a run function
that computes the result of a captured
computation:

run :: Expr -> Integer
run (Lit n)= n
run (Add a b) = run a + run b
run (Sub a b) = run a - run b
run (Mul a b) = run a * run b

Figure 5 illustrates the differences
between shallow and deep DSLs, and
how a deep embedding combined with
a specific run function gives the same
result. For a deep embedded DSL, the
run function restores the capability of
the shallow embedding, but another
function takes the embedded structure
and uses it in some creative way.

To make deep DSLs practical, there
are two additional tricks in the DSL
folklore that are almost always used.
The first trick allows the capture of
functions, via dummy arguments. The
second trick can observe loops, via
some form of observable sharing.

How to extract a deep embedding
from a function. Expressing function
calls in terms of constructors and
building expression trees is useful,
but by itself is a gimmick. With care-
ful construction, however, you can
also capture function definitions, as
well as other syntactical structures,

directly from a deep embedding. It is
at this point that the idea of capturing
code, then using the captured code to
execute code on a different target, be-
comes possible. Consider a simple
function to add one to its argument:

f :: Expr -> Expr
f x = x + 1

Here is a function that acts over the
new type Expr and returns a new
Expr. How can you capture this func-
tion? The trick is to invent a unique
Expr and pass it as a (dummy) argu-
ment to f:

data Expr where
 Lit :: Integer -> Expr
 Add :: Expr -> Expr -> Expr
 Sub :: Expr -> Expr -> Expr
 Mul :: Expr -> Expr -> Expr
 —new constructor Var
 Var:: String -> Expr

You can now run the function di-
rectly and see the result in your deep
embedding, or pass in the Var argu-
ment and see the actual function in
Figure 6: This is remarkable! You have

Figure 6. Capturing the structure of a function.

-- Just running the function
GHCi> f 4
Add (Lit 4) (Lit 1)
-- reifying the function, using our unique Var.
GHCi> f (Var “x”)
Add (Var “x”) (Lit 1) -- reified version of the function

Figure 7. A deep embedding for Lava.

data Signal where
 Register :: a -> Signal a -> Signal a
 Mux2 :: Signal Bool -> (Signal a,Signal a) -> Signal a
 Lit :: a -> Signal a
 Add :: Signal a -> Signal a -> Signal a
 --the Var trick
 Var :: String a -> Signal a

instance Num a => Num (Signal a) where
 a + b = Add a b

mux2 :: Signal Bool -> (Signal a,Signal a) -> Signal a
mux2 c (a,b) = Mux2 c (a,b)

register :: a -> Signal a -> Signal a
register d s = Register d s

--Now, when attempting to extract counter, things go horribly wrong:

GHCi> counter (Var “restart”) (Var “inc”)
Mux2 (Var “inc”) (Add (Mux2 (Var “restart”) (Lit 0,Register 0 (Mux2 (Var
“inc”) ...

practice

48 COMMUNICATIONS OF THE ACM | JUNE 2014 | VOL. 57 | NO. 6

ing, then translated into a graph with
explicit sharing. The final result for this
example entity counter is:

GHCi> reify (counter
 Var “restart”) (Var “inc”))
[(0,MUX2 1 (2,3)),
 (1,VAR “inc”),
 (2,ADD 3 4),
 (3,MUX2 5 (6,7)),
 (4,LIT 1),
 (5,VAR “restart”),
 (6,LIT 0),
 (7,REGISTER 0 0)]

In this output, each uppercase con-
structor corresponds to its deep-em-
bedding constructor. A quick inspec-
tion shows that the circuit has been
captured, as shown in Figure 3. From
this netlist-style structure, generating
VHDL is straightforward. For the ex-
ample of four-bit numbers, the VHDL
is provided in Figure 8.

These two tricks (prototypical argu-
ment and I/O-based observable shar-
ing) are the technical fundamentals of
Kansas Lava. On top of this base, and
with help from the Haskell type sys-
tem, an entire ecosystem for circuit
generation has been developed. The
DSL idiom allows programmers to use
high-level abstraction in Haskell and
generate efficient circuits. Not all is
rosy, however; writing a Lava program
is not the same as writing a Haskell
program because of the limitations of
deep embeddings.

A Deep Embedding Is
Only Half a Program
The basis of a deep EDSL is one of
constructiveness. Functional pro-
gramming is about constructing and
deconstructing values. Because of this,
a deep embedding cannot reify any
pattern matching—or even direct us-
age of if-then-else—and other control
flow. Kansas Lava sidestepped this—
for example, by using a mux2 con-
structor, which encodes choice. How
much further can the idiom be pushed
if you need to be deconstructive? The
result is surprising. Let’s start with the
three capabilities:

 ˲ Basic expressions can be captured
by constructing a tree that is an ana-
logue to your syntax.

 ˲ Functions can be captured using a
fake unique argument.

run a function with a dummy argu-
ment (called the prototypical argument)
and extracted the body of the function.

This idea scales to multi-argument
functions. Consider g:

g :: Expr -> Expr -> Expr
g x y = x * x + y + 2

Two prototypical arguments to g
will capture the function:

GHCi> g (Var “x”) (Var “y”)
Add (Add (Mul (Var “x”) (Var
“x”)) (Var “y”)) (Lit 2)

There are many places this design
pattern can be used. One example is
the specification of surface textures as
functions; it is possible to export these
into code executable on GPUs, simul-
taneously lifting the abstractions used
to write textures and speeding up how
fast an implementation of the same
operations would run. There is nothing
that is specific about Haskell or even
functional languages here. Indeed, the
same ideas have been used in Java for
a VHSIC Hardware Description Lan-
guage (VHDL) generator.2 Haskell, with
its powerful abstractions, allows deep
DSLs almost to feel like a straightfor-
ward shallow embedding.

How to spot a loop. Lava programs
are written as equations of recursive
bindings. An attempt to build a deep

embedding of Lava directly will lead
to an infinite cycle of structures. To
illustrate the challenge, let’s build a
deep embedding of Lava, see where it
goes wrong, and fix it using a technique
called observable sharing.

First the Lava language needs a
structure. In Figure 7, we define the
functions used before but give them a
deep embedding, called Signal.

The output tree is infinite. What
has happened is the recursive defini-
tions are unrolling during attempts
to reify the function, or more specifi-
cally, the body of counter is looping.
At this point, the EDSL community
was stymied. There were efforts to use
monadic structure, where the loop was
expressed using do-notation,8 making
the loop an observable effect. There
was an unsafe extension to observe a
limited form of sharing by circumvent-
ing part of the purity of Haskell, called
observable sharing.5 There was also an
extension of the Haskell I/O mecha-
nism that allowed loops to be observed
indirectly, called I/O-based observable
sharing.9 The net effect of all three
mechanisms is that the observed tree is
rendered as a graph with named edges.

At this point Haskell rescues us from
some complexity. Advanced type-system
mechanisms, such as higher-kinded ar-
guments, allow a structure to be either
a tree or graph, depending on type-level
instantiation. Omitting the details here,
the reified function is a tree with shar-

FPO
Figure 8. VHDL generated by Kansas Lava for counter.

entity counter is
 port(rst : in std_logic;
 clk : in std_logic;
 clk_en : in std_logic;
 restart : in std_logic;
 inc : in std_logic;
 output : out std_logic_vector(3 downto 0));
end entity counter;
architecture str of counter is
 signal sig_2_o0 : std_logic_vector(3 downto 0);
 ...
begin
 sig_2_o0 <= sig_5_o0 when (inc = ‘1’) else sig_6_o0;
 sig_5_o0 <= std_logic_vector(...);
 sig_6_o0 <= “0000” when (restart = ‘1’) else sig_10_o0;
 sig_10_o0_next <= sig_2_o0;
 proc14 : process(rst,clk) is
 begin
 if rst = ‘1’ then
 sig_10_o0 <= “0000”;
 elsif rising_edge(clk) then
 if (clk_en = ‘1’) then
 sig_10_o0 <= sig_10_o0_next;

end architecture;

practice

JUNE 2014 | VOL. 57 | NO. 6 | COMMUNICATIONS OF THE ACM 49

 ˲ Local bindings can be observed us-
ing some form of observable sharing.

With these three comes an automat-
ic fourth capability:

 ˲ The host language provides a built-
in macro capability to the embedded
language. Any part of Haskell (includ-
ing control flow and pattern matching)
can be used to generate the embedded
language.

There are also extensions to the ba-
sic techniques. The principal ones are:

 ˲ Internal function calls can be cap-
tured as nodes on a graph, rather than
directly inlined.14 This helps compila-
tion of large programs, giving a basic
separate compilation capability.

 ˲ The do statement can be reified
by normalization.16,19,22 This result,
called monadic reification, is surpris-
ing. There are strong technical reasons
to believe monadic reification should
be impossible; however, the normal-
ization refactors the constraints that,
by themselves, would be impossible to
solve and matches them up, one-on-
one, with a matching witness, allowing
the whole do-notation to be solved and
reified. Monadic reification is a recent
discovery but has already been used in
several deep DSLs, including Feldspar1
and Sunroof.3

 ˲ Control flow is problematic and
cannot be used directly, but there is
a generalization of Haskell Boolean
that does allow deep-embedding cap-
ture.6 Using this library, a DSL with
control flow can be constructed, but it
needs to be explicit code, at the DSL
level, using constructors. The mux2
function used previously is a sim-
plification of this idea. The usage is
clumsy but workable, and we should
be able to do better.

Where does this leave deep DSLs?
They are clearly a useful design pat-
tern for the language implementer,
but they come with costs and limita-
tions. How can we therefore push the
state of the art and allow more of the
Haskell language to be reified? There
are two primary shortcomings. One
we have discussed already: control
flow and pattern matching remain a
thorn in deep DSLs.

Parametric polymorphism, one
of the strengths of a functional pro-
gram, is the other issue for deep
DSLs. A specific structure is needed
to represent what has been captured,

and arbitrary polymorphism inter-
feres with this. Current systems side-
step this issue by always instantiating
at a specific type, but this is expensive
because the size of the captured pro-
gram can expand exponentially. Poly-
morphism was the technical reason it
was thought that monadic reification
was not possible, but in that case it
was sidestepped by normalization;
this technique does not generalize to
all polymorphism.

A deep DSL is a value-level way of
extracting an expression, but there are
other ways. Quasi-quoting is a mecha-
nism for extracting expressions, but at
the syntactic level. Haskell comes with
an extensive template system called
Template Haskell20, which is often
used for DSLs. There is a sense of un-
ease with such solutions; however, in
much the same way the C preproces-
sor is used even though it is not con-
sidered elegant. The principal issue
is that the syntax of Haskell is huge,
consisting of around 100 syntactical
terms. An expression-based solution,
such as a deep embedding, can avoid
the need to rewrite front translations.
Quasi-quoting has one important ad-
vantage: specifically, it can cope with
control flow and deconstruction of
values. Perhaps the future of deep
DSLs is some hybrid between expres-
sion generation and quasi-quoting,
combining the best of both systems.

Acknowledgments
This article is based upon work sup-
ported by the National Science Foun-
dation under Grant No. CCF-1117569,
and was originally presented as a mas-
ter class under the Scottish Informat-
ics & Computer Science Alliance Visit-
ing Fellow program in Nov. 2013. The
Kansas Lava examples and description
were adapted from an earlier article
about Lava written by the author.10

 Related articles
 on queue.acm.org

OCaml for the Masses

Yaron Minsky
http://queue.acm.org/detail.cfm?id=2038036

The World According to LINQ

Erik Meijer
http://queue.acm.org/detail.cfm?id=2024658

DSL for the Uninitiated
Debasish Ghosh
http://queue.acm.org/detail.cfm?id=198975

References
1. Axelsson, E., Claessen, K., Sheeran, M., Svenningsson,

J., Engdal, D. and Persson, A. The design and
implementation of Feldspar: an embedded language
for digital signal processing. In Proceedings of the
22nd International Conference on Implementation and
Application of Functional Languages. Springer-Verlag,
2011, 121–136.

2. Bellows, P. and Hutchings, B. JHDL—An HDL for
reconfigurable systems. Annual IEEE Symposium on
Field-Programmable Custom Computing Machines (1998).

3. Bracker, J. and Gill, A. Sunroof: A monadic DSL
for generating JavaScript. Practical Aspects of
Declarative Languages. M. Flatt and H-F Guo, eds.
Lecture Notes in Computer Science 8324. Springer
International Publishing, 2014, 65–80.

4. Claessen, K. and Hughes, J. Quickcheck: A lightweight
tool for random testing of Haskell programs. In
Proceedings of the 5th ACM SIGPLAN International
Conference on Functional Programming (2000), 268–279.

5. Claessen, K. and Sands, D. Observable sharing for
functional circuit description. In Proceedings of Asian
Computer Science Conference, Lecture Notes in
Computer Science. Springer Verlag, 1999.

6. Elliott, C. Boolean package; hackage.haskell.org.
7. Elliott, C. Finne, S. and de Moor, O. Compiling

embedded languages. Journal of Functional
Programming 13, 2 (2003).

8. Erkök, L. and Launchbury, J. Recursive monadic
bindings. In Proceedings of the 5th ACM SIGPLAN
International Conference on Functional Programming
(2000), 174–185.

9. Gill, A. Type-safe observable sharing in Haskell.
In Proceedings of the 2nd ACM SIGPLAN Haskell
Symposium (2009), 117–128.

10. Gill, A. Declarative FPGA circuit synthesis using
Kansas Lava. The International Conference
on Engineering of Reconfigurable Systems and
Algorithms (2011).

11. Gill, A., Bull, T., Farmer, A., Kimmell, G. and Komp,
E. Types and associated type families for hardware
simulation and synthesis: the internals and externals
of Kansas Lava. Higher-Order and Symbolic
Computation, (2013), 1–20.

12. Hutton, G. The Ruby interpreter. Research Report 72,
(1993). Chalmers University of Technology.

13. Jones, G. and Sheeran, M. Circuit design in Ruby.
Formal Methods for VLSI Design. Jorgen Staunstrup,
ed. Elsevier Science Publications, 1990.

14. Mainland, G. and Morrisett, G. Nikola: Embedding
compiled GPU functions in Haskell. In Proceedings of the
3rd ACM Haskell Symposium on Haskell, (2010), 67–78.

15. Matthews, J., Cook, B. and Launchbury, J. Microprocessor
specification in Hawk. In Proceedings of the International
Conference on Computer Languages (1998), 90–101.

16. Persson, A., Axelsson, E. and Svenningsson, J.
Generic monadic constructs for embedded languages.
Implementation and Application of Functional
Languages, 2012, 85–99. Springer.

17. Peyton Jones, S.L., ed. Haskell 98 Language and
Libraries—The Revised Report. Cambridge University
Press, 2003.

18. Peyton Jones, S.L. and Wadler, P. Imperative
functional programming. In Proceedings of the 20th
ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, (1993), 71–84.

19. Sculthorpe, N., Bracker, J., Giorgidze, G. and Gill, A.
The constrained-monad problem. In Proceedings of
the 18th ACM SIGPLAN International Conference on
Functional Programming, (2013), 287–298.

20. Sheard, T. and Jones, S.P. Template
metaprogramming for Haskell. ACM SIGPLAN
Haskell Workshop 02. M.M.T. Chakravarty, ed. ACM
Press, Oct 2002, 1–16.

21. Sheeran, M. µFP, a language for VLSI design. In
Proceedings of the ACM Symposium on LISP and
Functional Programming, (1984), 104–112.

22. Svenningsson, J. and Svensson, B.J. Simple and
compositional reification of monadic embedded
languages. In Proceedings of the Int’l Conference on
Functional Programming, (2013), 299–304.

Andy Gill (andygill@ku.edu) is an assistant professor in
the Department of Electrical Engineering and Computer
Science at the University of Kansas.

Copyright held by Owner/Author. Publication rights
licensed to ACM. $15.00.

