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programmers). In short, each of these 
examples uses a Domain-Specific 
Language (DSL).

A DSL is a special-purpose lan-
guage, designed to encapsulate pos-
sible computations in a specific 
domain. In the earlier examples of 
MATLAB, SQL, Verilog, and spread-
sheets, the domains would be scien-
tific modeling, database queries and 
updates, hardware circuits, and fi-
nancial computations, respectively. 
Considering SQL specifically, there 
is nothing it does that could not be 
done in Java or C, or any other gener-
al-purpose programming language. 
SQL simply bundles the actions need-
ed to interact with a database into a 

THERE ARE MANY ways to give instructions to a computer:  
an electrical engineer might write a MATLAB program;  
a database administrator might write an SQL script;  
a hardware engineer might write in Verilog; and an 
accountant might write a spreadsheet with embedded 
formulas. Aside from the difference in language used in 
each of these examples, there is an important difference 
in form and idiom. Each uses a language customized to 
the job at hand, and each builds computational requests 
in a form both familiar and productive for programmers 
(although accountants may not think of themselves as 
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on Engineering of Reconfigurable Sys-
tems and Algorithms.10

Haskell is all about types. Types in 
Haskell, like those in other languages, 
are constraining summaries of struc-
tural values. For example, in Haskell 
Bool is the type of the values True 
and False; Int is the type of machine-
sized words; Double is the type of 
double-precision IEEE floating-point 
values; and this list goes on in the same 
manner as C, C++, Java, and other tra-
ditional languages. All of these type 
names in Haskell start with an upper-
case letter.

On top of these basic types, Haskell 
has two syntactic forms for expressing 
compound types. First, pairs, triples, 

usable and productive package, and 
the language becomes the interface 
to communicate requests to the data-
base engine.

There are two fundamental types 
of DSLs. The first is a first-class lan-
guage, shown in Figure 1(1), with its 
own compiler or interpreter, and it is 
often used in its own ecosystem. All 
the examples mentioned so far fall 
into this category. The primary differ-
ence between the SQL DSL and, for ex-
ample, Java is one of scope and focus, 
although sometimes DSLs grow to be 
as large as general-purpose languages. 

The other class of DSL is a language 
embedded in a host language, as shown 
in Figure 1(2). Such languages can have 

the look and feel of being their own lan-
guage, but they leverage the host lan-
guage’s existing ecosystem and initial 
semantics. This article is concerned 
with this second class of DSLs.

Haskell Primer
An embedded DSL (EDSL) is a language 
inside a language. Haskell,17 the pre-
mier pure functional programming 
language, is a great host for EDSLs be-
cause of flexible overloading, a power-
ful type system, and lazy semantics. 
This section provides a terse introduc-
tion to Haskell, sufficient to make this 
article self-contained. It is an extended 
version of the Haskell primer I gave in 
2011 at the International Conference 
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and Just:

data Maybe where
 Nothing ::      Maybe a
 Just    :: a -> Maybe a

Nothing is a Maybe of anything; 
Just, with an argument, is a Maybe 
with the type of the argument. These 
constructors can be used to construct 
and deconstruct structures, but there 
is never any updating; all structures in 
Haskell are immutable.

It is possible to give specific types 
extra powers, such as equality and com-
parison, using the class-based over-
loading system. The Maybe type, for 
example, can be given the ability to test 
for equality, using an instance:

instance Eq a => Eq (Maybe a) 
   where
 Just a  == Just b  = a == b
 Nothing == Nothing = True
 _       == _       = False

This states that for any type that can 
be tested for equality, you can also 
check Maybe of the same type. You 
take the Maybe apart, using pattern 
matching on Just, to check the in-
ternal value.

In Haskell, side effects such as 
writing to the screen or reading the 
keyboard are described using a do-
notation:

main :: IO ()
main = do
 putStrLn “Hello”
 xs <- getLine
 print xs

In this example a value called 
main uses the do-notation to de-
scribe an interaction with a user. Ac-
tually, the do-notation captures this 
as a structure called a monad; purity 
is not compromised. More detailed 
information is available on how the 
do-notation and monads can provide 
an effectful interface inside a pure 
language such as Haskell.18 For the 
purposes of this article, do-nota-
tion is a way of providing syntax and 
structure that looks like interaction. 
There are many tutorials on Haskell; 
the Haskell  website, (http://haskell.
org) is a good starting point for fur-
ther reading.

and larger structures can be written 
using tuple-syntax, comma-separat-
ed types inside parentheses. Thus, 
(Int,Bool) is a structure with both an 
Int and a Bool component. Second, 
lists have a syntactic shortcut, using 
square brackets. Thus, [Int] is a list 
of Int.

Haskell also has other container 
types. A container that may contain 
one Int has the type Maybe Int, 
which is read Maybe of Int. These con-
tainer names also start with upper-
case letters. 

Types can be nested to any depth. 
For example, you can have a [(Maybe 
(Int,Bool))], read as list of Maybe of 
(Int and Bool).

Polymorphic values are expressed 
using lowercase letters and play a 
similar role to void* pointers in C and 
polymorphic arguments in the Java 
generics facility. These polymorphic 
values can have constraints expressed 
over them, using the Haskell equiva-
lent of an object hierarchy.

Finally, a function is written using 
an arrow from argument type to result 
type. Thus, in Haskell, a function that 
takes a list and returns a list is written 
as: [a] -> [a].

Here is an example of a Haskell 
function:

sort :: (Ord a) => [a] -> [a]
sort []     = []
sort (x:xs) = sort before  
        ++ [x] ++ sort after
 where
      before = filter (<= x) xs
      after  = filter (> x) xs

This function sorts a list using a variant 
of quicksort in which the pivot is the 
first element of the list:

 ˲ The first line is the type for sort. 
This is ∀a, such that a can be ordered 
(admits comparisons like <=); the func-
tion takes and return a list of such a’s.

 ˲ The second line says that an empty 
list is already sorted.

 ˲ The remaining lines state that a 
non-empty list can be sorted by taking 
the first and rest of the list (called x and 
xs, respectively), sorting the values be-
fore this pivot and after this pivot, and 
concatenating these intermediate val-
ues together.

 ˲ Finally, intermediate values can be 
named using the where syntax; in this 
case the values of before and after.

Haskell is a concise and direct lan-
guage. Structures in Haskell are de-
noted using types, constructed and 
deconstructed, but never updated. For 
example, the Maybe type can be de-
fined using two constructors, Nothing 

Figure 1. Types of domain-specific languages.
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Figure 2. A counter in Kansas Lava.

counter :: (Rep a, Num a) => Signal Bool -> Signal Bool -> Signal a
counter restart inc = loop
   where reg = register 0 loop
         reg’ = mux2 restart (0,reg)
         loop = mux2 inc (reg’ + 1, reg’)
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Embedded DSLs
An EDSL is a library in a host language 
that has the look, feel, and semantics 
of its own language, customized to a 
specific problem domain. By reusing 
the facilities and tools of the host lan-
guage, an EDSL considerably lowers the 
cost of both developing and maintain-
ing a DSL. Benefiting from Haskell’s 
concise syntax, the Haskell communi-
ty—and the functional programming 
community in general—has taken the 
ideas of EDSLs and developed a large 
number of DSLs that provide higher-
level interfaces and abstractions for 
well-understood systems. What fol-
lows are two examples of EDSLs: one 
for automatically generating test cases 
for software testing; and a second for 
specifying hardware-circuit behaviors.

Example EDSL: QuickCheck Prop-
erties. Consider the challenge of writ-
ing test cases—or more specifically, 
writing the properties that test cases 
need to satisfy:

--The reverse of a reverse’d 
--list is itself
prop _ reverse _ twice 
  (xs :: [Int])  
 = reverse (reverse xs) == xs

In this example, prop_reverse_twice  
is a regular Haskell function that 
takes a list of Int and returns a Bool-
ean, based on the validity of what is 
being proposed—specifically, that 
two reverses cancel each other out. 
Here is the neat part: prop_reverse_
twice is also a domain-specific state-
ment and as such can be considered 
a sublanguage inside Haskell. This 
style of using functions (in this case, 
functions with names prefixed with 
prop_ , taking a number of typed ar-
guments, and returning a condition-
al) is a small language. The property 
written in Haskell is also an EDSL for 
properties, called QuickCheck.4 This 
EDSL can be run using a function also 
called quickCheck:

GHCi>quickCheck prop _ reverse 
_ twice
+++ OK, passed 100 tests.

By running quickCheck with this 
explicit and specific property, the EDSL 
executes inside Haskell. The quick-
Check function generates 100 test cas-

es for the property and executes them 
on the fly. If they all hold, then the sys-
tem prints a message reflecting this. 
The test cases are generated using the 
type class system—QuickCheck gives 
specific types the power of test-case gen-
eration—and the quickCheck func-
tion uses this to generate random tests.

As an example of an incorrect prop-
erty, consider this property for re-
verse.

prop _ reverse (xs::[Int]) ys = 
  reverse xs ++ reverse ys  
    == reverse (xs ++ ys)

This states that the reverse of two dis-
tinct lists is the same as the reverse of 
both lists appended together, but this 
property is false.

GHCi>quickCheck prop _ reverse
Falsifiable, after 5 tests:
[0]
[2,-2]

It turns out that this sort of mini-
language is really useful in practice. 
Despite the simplicity of how Haskell 
is being used, the QuickCheck EDSL 
provides a way of thinking about and 
directly expressing properties. It has 
additional functionality, including 
the ability to generate random func-
tion arguments, to control the distri-
bution of the random test cases, and 
to state preconditions of a property. 
From this DSL, many other implemen-

tations of these ideas have been con-
structed. There is even a Swedish com-
pany, QuviQ, that sells a QuickCheck 
for the concurrent programming lan-
guage Erlang.

Example EDSL: Kansas Lava. To 
take another example, consider de-
scribing hardware. Hardware descrip-
tion languages and functional lan-
guages have long enjoyed a fruitful 
partnership. Lava is the name given 
to a class of Haskell DSLs that imple-
ment a function-based version of 
the hardware description language 
Ruby.12,13 Not to be confused with the 
modern programming language of the 
same name, Ruby was based on rela-
tions, which was in turn inspired by 
the seminal work in µFP.21

Kansas Lava11 is a Haskell-hosted 
DSL that follows the Lava line of re-
search. It is a language for expressing 
gate-level circuits. Haskell abstrac-
tions allow the programmer to work 
at a slightly higher level of abstrac-
tion, where the model is one of recur-
sive components communicating via 
synchronized streams. Kansas Lava 
has been used for the generation of 
high-performance circuits for telem-
etry decoders, though the model used 
is general. 

As an example of Kansas Lava, con-
sider Figure 2: This circuit connects 
two multiplexers (mux2), an adder, 
and a register to give a circuit that 
counts the number of clocked pulses 
on a signal inc. The circuit takes two 

Figure 3. Schematic Kansas Lava parity counter.
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Figure 4. Running Kansas Lava as a simulation.

GHCi> toSeq (cycle [True,False,False])
True : False : False : True : False : False : True : False : False : ...
GHCi> counter low (toSeq (cycle [True,False,False]))
1 : 1 : 1 : 2 : 2 : 2 : 3 : 3 : 3 : ...
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grammable gate arrays)? Can EDSLs 
be used to generate code for embed-
ded processors or GPUs? Such an 
ability—to synthesize external solu-
tions—would be extremely useful. 
The EDSL idiom can be extended to 
do so, with significant caveats. The 
remainder of this article is about 
how to capture and offshore work 
from inside an EDSL, what this capa-
bility can be used for, and what the 
limitations are.

Deeply Embedded Domain-
Specific Languages
EDSLs are simply a way of thinking 
about a library of provided functions, 
often called combinators, because 
they combine their arguments into 
terms inside the DSL. In the previous 
Lava example, the register com-
binator takes an initial value—and 
an incoming stream of values—and 
provides the new stream, delayed by 
a single cycle, with the initial value 
occupying the initial cycle. Criti-
cally, register is compositional; it 
combines smaller parts of the DSL to 
make larger solutions. If a DSL fol-
lows this composability carefully by 
design, an important alternative im-
plementation is possible.

The most common flavor of EDSL 
is one that uses so-called shallow 
embedding, as seen in Figure 1(2a), 
where values are computed directly. 
The result of a computation in a shal-
low EDSL is a value. All the examples 
so far are shallow. There is another 
class of EDSLs, however: specifically, 
those that use a deep embedding 
to build an abstract syntax tree, as 
shown in Figure 1(2b). The result of a 
computation inside a deeply embed-
ded DSL (deep EDSL) is a structure, 
not a value, and this structure can be 
used to compute a value or be cross-
compiled before being evaluated.7 
Such deep EDSLs follow the compos-
ability mantra pedantically, by design 
and mandate.

Historically, EDSLs have been shal-
low—simply a way of structuring an 
API for a library. Deep EDSLs, howev-
er, have the ability to stage code—that 
is, executing a program can generate 
another program, much like the well-
known YACC DSL, but at the cost of 
significantly restricting what forms 
of the DSL can generate valid output. 

clocked signals and returns a clocked 
signal that explicitly operates using 
the same clock, because they share 
the same type. The use of arithmetic 
is understated, but simply uses (via 
overloading) the standard syntax for 
addition; the Num constraint allows 
this. Figure 3 illustrates the circuit in-
tended for this description.

You can simulate sequential cir-
cuits with the same directness as the 
combinational functions invoked (see 
Figure 4).

As well as basic signal types, you can 
build circuits that operate on Haskell 
functions directly, provided the do-
main of the function is finite. The Rep 
capability is used to signify that you 
can enumerate all possible represent-
able values in a type, giving the fun-
Map function:

funMap :: (Rep a, Rep b)
    => (a -> Maybe b) 
    -> Signal a 
    -> Signal b

The generated circuit is implement-
ed using a ROM, and you can gener-
ate control logic directly in terms of 
Haskell functions and data structures. 
As an example, consider a small ROM 
that stores the square of a value:

squareROM :: (Num a, Rep a) 
 => Signal a -> Signal a
squareROM = funMap  
   (\ x -> return (x * x))

In this way, direct Haskell functions 
can be lifted into the Signal world. 
Notice how the squareROM function 
is not specific about size but is com-
pletely generic, requiring only the 
type of the argument stream to be rep-
resentable as a number.

The clock-squaring ROM can now 
be used at specific types. For exam-
ple, at eight-bit you can generate the 
following:

GHCi> squareROM (toSeq [0,1..] :: 
   Signal Word8)
  0 : 1 : 4 : 9 : 16 : 25 : 36 : 49 : 64 : 
  81 : 100 : 121 : 144 : 169 : 196 : 
  225 : 0 : ...

This level of circuit specification has 
been used to great effect in many Lava 
and Lava-like languages. One notable 
instance is Hawk,15 a Lava-like EDSL 
that was used to specify the entire mi-
cro-architecture of the Pentium Pro, 
including the super-scaler design, 
and register bypass capabilities.

Now, if DSLs are so powerful as 
an idiom for library design, then why 
have they not taken over? As a means 
for expressing things that can be 
simulated, EDSLs are an invaluable 
design pattern; however, not every-
thing is a simulation. What if you 
wanted to use an EDSL to express 
something you want to run some-
where else, not inside the Haskell 
system? Can Lava be used to generate 
circuits to be run on FPGAs (field-pro-

Figure 5. Shallow and deep embedding of arithmetic.
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There are a growing number of deep 
EDSLs, along with a body of research 
around their form and limitations. 
The unifying theme is that deep ED-
SLs can be pragmatic, productive, and 
useful.

This section investigates the basic 
structure of a deep EDSL compared 
with a shallow EDSL, and looks at 
three pragmatic tricks for improving 
the usefulness of deep EDSLs.

Building a deep EDSL. A deeply em-
bedded DSL exposes its own composi-
tion and structure. Rather than using 
functions operating directly on values 
(a shallow DSL), a deep DSL builds a 
structure, then allows some secondary 
agent to provide interpretation of this 
structure. To make this idea concrete, 
consider a DSL for arithmetic, with 
addition, subtraction, multiplication, 
and constants. For a shallow embed-
ding, running this DSL is trivial; you 
just use the built-in arithmetic. A 
deep embedding is where things get 
interesting. Consider a data type for 
our arithmetic:

data Expr where
    Lit :: Integer -> Expr
    Add :: Expr -> Expr -> Expr
    Sub :: Expr -> Expr -> Expr
    Mul :: Expr -> Expr -> Expr
    deriving Eq

Now overload the arithmetic to use 
this Expr data type; in Haskell, Num is 
the overloading for integral arithmetic:

instance Num Expr where
    fromInteger n = Lit n
    e1 + e2 = Add e1 e2
    e1 - e2 = Sub e1 e2
    e1 * e2 = Mul e1 e2

By building expressions of type 
Expr, you can observe the structure of 
the computation:

GHCi> 1 + 2 * 3 :: Expr
Add (Lit 1) (Mul (Lit 2) (Lit 3))

This is profound, and it is the key 
idea that makes deep embeddings 
work. You can write an expression and 
extract a tree of what to do, not a direct 
result. With deep embeddings, it is 
common also to write a run function 
that computes the result of a captured 
computation:

run :: Expr -> Integer
run (Lit n)= n
run (Add a b) = run a + run b
run (Sub a b) = run a - run b
run (Mul a b) = run a * run b

Figure 5 illustrates the differences 
between shallow and deep DSLs, and 
how a deep embedding combined with 
a specific run function gives the same 
result. For a deep embedded DSL, the 
run function restores the capability of 
the shallow embedding, but another 
function takes the embedded structure 
and uses it in some creative way.

To make deep DSLs practical, there 
are two additional tricks in the DSL 
folklore that are almost always used. 
The first trick allows the capture of 
functions, via dummy arguments. The 
second trick can observe loops, via 
some form of observable sharing.

How to extract a deep embedding 
from a function. Expressing function 
calls in terms of constructors and 
building expression trees is useful, 
but by itself is a gimmick. With care-
ful construction, however, you can 
also capture function definitions, as 
well as other syntactical structures, 

directly from a deep embedding. It is 
at this point that the idea of capturing 
code, then using the captured code to 
execute code on a different target, be-
comes possible. Consider a simple 
function to add one to its argument:

f :: Expr -> Expr 
f x = x + 1

Here is a function that acts over the 
new type Expr and returns a new 
Expr. How can you capture this func-
tion? The trick is to invent a unique 
Expr and pass it as a (dummy) argu-
ment to f:

data Expr where
    Lit :: Integer -> Expr
    Add :: Expr -> Expr -> Expr
    Sub :: Expr -> Expr -> Expr
    Mul :: Expr -> Expr -> Expr
    —new constructor Var 
    Var:: String -> Expr 

You can now run the function di-
rectly and see the result in your deep 
embedding, or pass in the Var argu-
ment and see the actual function in 
Figure 6: This is remarkable! You have 

Figure 6. Capturing the structure of a function.

-- Just running the function
GHCi> f 4
Add (Lit 4) (Lit 1)
-- reifying the function, using our unique Var.
GHCi> f (Var “x”)
Add (Var “x”) (Lit 1) -- reified version of the function

Figure 7. A deep embedding for Lava.

data Signal where
  Register :: a -> Signal a                      -> Signal a
  Mux2     :: Signal Bool -> (Signal a,Signal a) -> Signal a
  Lit      :: a                                  -> Signal a
  Add      :: Signal a -> Signal a               -> Signal a 
  --the Var trick
  Var      :: String a                           -> Signal a 

instance Num a => Num (Signal a) where
  a + b = Add a b

mux2 :: Signal Bool -> (Signal a,Signal a) -> Signal a
mux2 c (a,b) = Mux2 c (a,b)

register :: a -> Signal a -> Signal a
register d s = Register d s

--Now, when attempting to extract counter, things go horribly wrong:

GHCi> counter (Var “restart”) (Var “inc”)
Mux2 (Var “inc”) (Add (Mux2 (Var “restart”) (Lit 0,Register 0 (Mux2 (Var 
“inc”) ...
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ing, then translated into a graph with 
explicit sharing. The final result for this 
example entity counter is:

GHCi> reify (counter  
   Var “restart”) (Var “inc”))
[(0,MUX2 1 (2,3)),
 (1,VAR “inc”),
 (2,ADD 3 4),
 (3,MUX2 5 (6,7)),
 (4,LIT 1),
 (5,VAR “restart”),
 (6,LIT 0),
 (7,REGISTER 0 0)]

In this output, each uppercase con-
structor corresponds to its deep-em-
bedding constructor. A quick inspec-
tion shows that the circuit has been 
captured, as shown in Figure 3. From 
this netlist-style structure, generating 
VHDL is straightforward. For the ex-
ample of four-bit numbers, the VHDL 
is provided in Figure 8.

These two tricks (prototypical argu-
ment and I/O-based observable shar-
ing) are the technical fundamentals of 
Kansas Lava. On top of this base, and 
with help from the Haskell type sys-
tem, an entire ecosystem for circuit 
generation has been developed. The 
DSL idiom allows programmers to use 
high-level abstraction in Haskell and 
generate efficient circuits. Not all is 
rosy, however; writing a Lava program 
is not the same as writing a Haskell 
program because of the limitations of 
deep embeddings.

A Deep Embedding Is 
Only Half a Program
The basis of a deep EDSL is one of 
constructiveness. Functional pro-
gramming is about constructing and 
deconstructing values. Because of this, 
a deep embedding cannot reify any 
pattern matching—or even direct us-
age of if-then-else—and other control 
flow. Kansas Lava sidestepped this—
for example, by using a mux2 con-
structor, which encodes choice. How 
much further can the idiom be pushed 
if you need to be deconstructive? The 
result is surprising. Let’s start with the 
three capabilities:

 ˲ Basic expressions can be captured 
by constructing a tree that is an ana-
logue to your syntax.

 ˲ Functions can be captured using a 
fake unique argument.

run a function with a dummy argu-
ment (called the prototypical argument) 
and extracted the body of the function.

This idea scales to multi-argument 
functions. Consider g:

g :: Expr -> Expr -> Expr
g x y = x * x + y + 2

Two prototypical arguments to g 
will capture the function:

GHCi> g (Var “x”) (Var “y”)
Add (Add (Mul (Var “x”) (Var 
“x”)) (Var “y”)) (Lit 2)

There are many places this design 
pattern can be used. One example is 
the specification of surface textures as 
functions; it is possible to export these 
into code executable on GPUs, simul-
taneously lifting the abstractions used 
to write textures and speeding up how 
fast an implementation of the same 
operations would run. There is nothing 
that is specific about Haskell or even 
functional languages here. Indeed, the 
same ideas have been used in Java for 
a VHSIC Hardware Description Lan-
guage (VHDL) generator.2 Haskell, with 
its powerful abstractions, allows deep 
DSLs almost to feel like a straightfor-
ward shallow embedding.

How to spot a loop. Lava programs 
are written as equations of recursive 
bindings. An attempt to build a deep 

embedding of Lava directly will lead 
to an infinite cycle of structures. To 
illustrate the challenge, let’s build a 
deep embedding of Lava, see where it 
goes wrong, and fix it using a technique 
called observable sharing.

First the Lava language needs a 
structure. In Figure 7, we define the 
functions used before but give them a 
deep embedding, called Signal. 

The output tree is infinite. What 
has happened is the recursive defini-
tions are unrolling during attempts 
to reify the function, or more specifi-
cally, the body of counter is looping. 
At this point, the EDSL community 
was stymied. There were efforts to use 
monadic structure, where the loop was 
expressed using do-notation,8 making 
the loop an observable effect. There 
was an unsafe extension to observe a 
limited form of sharing by circumvent-
ing part of the purity of Haskell, called 
observable sharing.5 There was also an 
extension of the Haskell I/O mecha-
nism that allowed loops to be observed 
indirectly, called I/O-based observable 
sharing.9 The net effect of all three 
mechanisms is that the observed tree is 
rendered as a graph with named edges.

At this point Haskell rescues us from 
some complexity. Advanced type-system 
mechanisms, such as higher-kinded ar-
guments, allow a structure to be either 
a tree or graph, depending on type-level 
instantiation. Omitting the details here, 
the reified function is a tree with shar-

FPO
Figure 8. VHDL generated by Kansas Lava for counter.

entity counter is
  port(rst : in std_logic;
       clk : in std_logic;
       clk_en : in std_logic;
       restart : in std_logic;
       inc : in std_logic;
       output : out std_logic_vector(3 downto 0));
end entity counter;
architecture str of counter is
  signal sig_2_o0 : std_logic_vector(3 downto 0);
  ...
begin
  sig_2_o0 <= sig_5_o0 when (inc = ‘1’)  else sig_6_o0;
  sig_5_o0 <= std_logic_vector(...);
  sig_6_o0 <= “0000” when (restart = ‘1’) else sig_10_o0;
  sig_10_o0_next <= sig_2_o0;
  proc14 : process(rst,clk) is
  begin
    if rst = ‘1’ then
      sig_10_o0 <= “0000”;
    elsif rising_edge(clk) then
      if (clk_en = ‘1’) then
        sig_10_o0 <= sig_10_o0_next;
  ....
end architecture;
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 ˲ Local bindings can be observed us-
ing some form of observable sharing.

With these three comes an automat-
ic fourth capability:

 ˲ The host language provides a built-
in macro capability to the embedded 
language. Any part of Haskell (includ-
ing control flow and pattern matching) 
can be used to generate the embedded 
language.

There are also extensions to the ba-
sic techniques. The principal ones are:

 ˲ Internal function calls can be cap-
tured as nodes on a graph, rather than 
directly inlined.14 This helps compila-
tion of large programs, giving a basic 
separate compilation capability.

 ˲ The do statement can be reified 
by normalization.16,19,22 This result, 
called monadic reification, is surpris-
ing. There are strong technical reasons 
to believe monadic reification should 
be impossible; however, the normal-
ization refactors the constraints that, 
by themselves, would be impossible to 
solve and matches them up, one-on-
one, with a matching witness, allowing 
the whole do-notation to be solved and 
reified. Monadic reification is a recent 
discovery but has already been used in 
several deep DSLs, including Feldspar1 
and Sunroof.3

 ˲ Control flow is problematic and 
cannot be used directly, but there is 
a generalization of Haskell Boolean 
that does allow deep-embedding cap-
ture.6 Using this library, a DSL with 
control flow can be constructed, but it 
needs to be explicit code, at the DSL 
level, using constructors. The mux2 
function used previously is a sim-
plification of this idea. The usage is 
clumsy but workable, and we should 
be able to do better.

Where does this leave deep DSLs? 
They are clearly a useful design pat-
tern for the language implementer, 
but they come with costs and limita-
tions. How can we therefore push the 
state of the art and allow more of the 
Haskell language to be reified? There 
are two primary shortcomings. One 
we have discussed already: control 
flow and pattern matching remain a 
thorn in deep DSLs.

Parametric polymorphism, one 
of the strengths of a functional pro-
gram, is the other issue for deep 
DSLs. A specific structure is needed 
to represent what has been captured, 

and arbitrary polymorphism inter-
feres with this. Current systems side-
step this issue by always instantiating 
at a specific type, but this is expensive 
because the size of the captured pro-
gram can expand exponentially. Poly-
morphism was the technical reason it 
was thought that monadic reification 
was not possible, but in that case it 
was sidestepped by normalization; 
this technique does not generalize to 
all polymorphism.

A deep DSL is a value-level way of 
extracting an expression, but there are 
other ways. Quasi-quoting is a mecha-
nism for extracting expressions, but at 
the syntactic level. Haskell comes with 
an extensive template system called 
Template Haskell20, which is often 
used for DSLs. There is a sense of un-
ease with such solutions; however, in 
much the same way the C preproces-
sor is used even though it is not con-
sidered elegant. The principal issue 
is that the syntax of Haskell is huge, 
consisting of around 100 syntactical 
terms. An expression-based solution, 
such as a deep embedding, can avoid 
the need to rewrite front translations. 
Quasi-quoting has one important ad-
vantage: specifically, it can cope with 
control flow and deconstruction of 
values. Perhaps the future of deep 
DSLs is some hybrid between expres-
sion generation and quasi-quoting, 
combining the best of both systems.
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