Streams -aéld,
--Evalua;

;:m&,‘

Llsp'

I g

ang

Overview

 Different models of expression evaluation
—Lazy vs. eager evaluation
—Normal vs. applicative order evaluation

* Computing with streams in Lisp and
Scheme

Motivation

e Streams 1n Unix

* Modeling objects changing with time without
assignment.

 Describe the time-varying behavior of an object as an
infinite sequence x1, x2,...

« Think of the sequence as representing a function x(t).

 Make the use of lists as conventional interface more
efficient.

Unix Pipes

* Unix’s pipe supports a kind of stream oriented processing

* E.g.: % cat mailbox | addresses | sort | uniq | more

e Output from one process becomes input to another. Data
flows one buffer-full at a time

* Benefits:
— we may not have to wait for one stage to finish before
another can start;

— storage is minimized;
— works for infinite streams of data

cat —Ej—»addr —Ej—» sort —Ej—»uniq —Ej—»more

Evaluation Order

* Functional programs are evaluated following a
reduction (or evaluation or simplification) process

* There are two common ways of reducing expressions

—Applicative order

e Eager evaluation

—Normal order

e Lazy evaluation

Applicative Order

* In applicative order, expressions at evaluated
following the parsing tree (deeper expressions
are evaluated first)

* This is the evaluation order used in most
programming languages
* |t's the default order for Lisp, in particular

* All arguments to a function or operator are
evaluated before the function is applied

e.g.: (square (+a (* b 2)))

Normal Order

* In normal order, expressions are evaluated
only when their value is needed

* Hence: lazy evaluation

* This is needed for some special forms
e.g., (if (< a 0) (print ‘foo) (print ‘bar))
 Some languages use normal order evaluation
as their default.

—lts sometimes more efficient than applicative order
since unused computations need not be done

—It can handle expressions that never converge to
normal forms

Motivation

e Goal: sum the primes between two numbers
e Here is a standard, traditional version using
Scheme’s iteration special form, do

(define (sum-primes lo hi)
;s sum the primes between LO and HI
(do [(sum O) (nlo (add1 n))]
[(> n hi) sum]
(if (prime? N)
(set! sum (+ sum n))
#t)))

Motivation: prime.ss

Here is a straightforward version using the
“functional” paradigm:

(define (sum-primes lo hi)
» sum primes between LO and HI
(reduce + 0 (filter prime? (interval lo hi))))

(define (interval lo hi)
» return list of integers between lo and hi
(if (> lo hi)

empty
(cons lo (interval (add1 lo) hi))))

Prime?

(define (prime? n)
;; returns #t iff nis a prime integer
(define (evenly-divides? m) (= (remainder n m) 0))
(not (some evenly-divides? (interval 2 (/ n 2)))))

(define (some F L)
;; returns #t iff predicate f is true of some element in list |

(cond ((null? L) #f)
((F (first L)) #t)
(else (some F (rest L)))))

Motivation

* The functional version is interesting and
conceptually elegant, but inefficient

—Constructing, copying and (ultimately) garbage
collecting the lists adds a lot of overhead

—Experienced Lisp programmers know that the best
way to optimize is to eliminate unnecessary consing

* Worse yet, suppose we want to know the
second prime larger than a million?

(car (cdr (filter prime? (interval 2000000 1100000))))

e Can we use the idea of a stream to make this
approach viable?

A Stream

e A stream will be a collection of values, much
like a List

e It will have a first element and a stream of
remaining elements

* However, the remaining elements will only be
computed (materialized) as needed

—Just in time computing, as it were

e SO, we can have a stream of (potential) infinite
length and use only a part of it without having
to materialize it all

Streams in Lisp and Scheme

e \We can push features for streams into a
programming language.

e Makes some approaches to computation
simple and elegant

e The closure mechanism used to implement
these features.

e Can formulate programs elegantly as
seguence manipulators while attaining the
efficiency of incremental computation.

Streams in Lisp/Scheme

e A stream is like a list, so we’ll need construc-
tors (~cons), and accessors (™~ car, cdr) and a
test (~ null?).

 We’ll call them:

—SNIL: represents the empty stream

—(SCONS X S): create a stream whose first element is
X and whose remaining elements are the stream S

—(SCAR S): returns first element of the stream
—(SCDR S): returns remaining elements of the stream
—(SNULL? S): returns true iff S is the empty stream

Streams: key ideas

* Write scons so that the computation needed to
produce the stream is delayed until it is needed

—... and then, only as little of the computation possible
will be done

* Only ways to access parts of a stream are scar & scdr,
so they may have to force the computation to be done

* We'll go ahead and always compute the first element
of a stream and delay actually computing the rest of a
stream until needed by some call to scdr

* Two important functions to base this on: delay & force

Delay and force

* (delay <exp>) ==> a “promise” to evaluate exp
* (force <delayed object>) ==> evaluate the delayed

object and return the result

> (define p (delay (add1 1)))
>p

#<promise:p>

> (force p)

2

>p

#<promise!l2>

> (force p)

> (define p2
(delay (printf "FOO'\n")))
> p2
#<promise:p2>
> (force p2)
FOO!
> p2
<promise! # <void> >
> (force p2)

2

Delay and force

* We want (delay S) to return the same function
that just evaluating S would have returned

> (define x 1)

> (define p (let ((x 10)) (delay (+ x x))))
H<promise:p>

> (force p)

> 20

Delay and force

* Delay is built into scheme, but it would have
oeen easy to add

* It’s not built into Lisp, but is easy to add

* In both cases, we need to use macros

* Macros provide a powerful facility to extend
the languages

Macros

* In Lisp and Scheme macros let us extend the
language

* They are syntactic forms with associated
definition that rewrite the original forms into
other forms before evaluating

—E.g., like a compiler

* Much of Scheme and Lisp are implemented as
macros

Simple macros in Scheme

e (define-syntax-rule pattern template)
* Example:
(define-syntax-rule (swap x y)
(let ([tmp x])
(set! x y)

(set!y tmp)))

* Whenever the interpreter is about to eval
something matching the pattern part of a syntax
rule, it expands it first, then evaluates the result

Simple Macros

» (define foo 100)

» (define bar 200)

» (swap foo bar)

(let ([tmp foo]) (set! foo bar)(set! bar tmp))

»foo

»>200

»bar

»100

A potential problem

* (let ([tmp 5] [other 6])
(swap tmp other)
(list tmp other))

* A naive expansion would be:

* (let ([tmp 5] [other 6])
(let ([tmp tmp])
(set! tmp other)
(set! other tmp))
(list tmp other))

* Does this return (6 5) or (5 6)?

Scheme is clever here

* (let ([tmp 5] [other 6])
(swap tmp other)
(list tmp other))

* (let ([tmp 5] [other 6])
(Ie@o_l tmp])
(set! tmp_Tother)
(set! other tmp_1))
(list tmp other))

* This returns (6 5)

mydelay in Scheme

» (define-syntax-rule (mydelay expr)
(lambda () expr))

> (define (myforce promise) (promise))
> (define p (mydelay (+ 1 2)))

>p

#<procedure:p>

> (myforce p)

3

>p

#<procedure:p>

mydelay in Lisp

(defmacro mydelay (sexp)
(function (lambda () ,sexp)))

(defun force (sexp)
(funcall sexp))

Streams using DELAY and FORCE
(define sempty empty)
(define (snull? stream) (null? stream))

(define-syntax-rule (scons first rest)
(cons first (delay rest)))

(define (scar stream) (car stream))

(define (scdr stream) (force (cdr stream)))

Consider the interval function

e Recall the interval function:
(define (interval lo hi)
; return a list of the integers between lo and hi
(if (> lo hi) empty (cons lo (interval (add1 lo) hi))))
* Now imagine evaluating (interval 1 3):
(interval 1 3)
(cons 1 (interval 2 3))
(cons 1 (cons 2 (interval 3 3)))
(cons 1 (cons 2 (cons 3 (interval 4 3)))

(cons 1 (cons 2 (cons 3 ())))
= (12 3)

... and the stream version

* Here’s a stream version of the interval function:
(define (sinterval lo hi)
; return a stream of integers between lo and hi

(if (> lo hi)
sempty
(scons lo (sinterval (add1 lo) hi))))
* Now imagine evaluating (sinterval 1 3):
(sinterval 1 3)

(scons 1. #<procedure>))

Stream versions of list functions

(define (snth n stream)
(if (=n 0)
(scar stream)
(snth (sub1 n) (scdr stream))))

(define (smap f stream)
(if (snull? stream)
sempty
(scons (f (scar stream))
(smap f (scdr stream)))))

(define (sfilter f stream)
(cond ((snull? stream) sempty)

((f (scar stream))
(scons (scar stream) (sfilter f (scdr stream))))

(else (sfilter f (scdr stream)))))

Applicative vs. Normal order evaluation

(car (cdr
(filter prime? (interval 10 1000000))))

(scar

(scdr
(sfilter prime? (interval 10 1000000))))

Both return the second prime larger than 10
(which 1s 13)
*With lists 1t takes about 1000000 operations
*With streams about three

Infinite streams

(define (sadd s1 s2)

; returns a stream which is the pair-wise
; sum of input streams S1 and S2.

(cond ((snull? s1) s2)
((snull? s2) s1)

(else (scons (+ (scar s1) (scar s2))
(sadd (scdr s1)(scdr s2))))))

Infinite streams 2

* This works even with infinite streams

* Using sadd we define an infinite stream of ones:
(define ones (scons 1 ones))

* An infinite stream of the positive integers:
(define integers (scons 1 (sadd ones integers)))

The streams are computed as needed
(snth 10 integers) => 11

Sieve of Eratosthenes

Eratosthenes (air-uh-TOS-thuh-neez),
a Greek mathematician and astrono- =
mer, was head librarian of the Library at Alexandria,
estimated the Earth’s circumference to within 200
miles and derived a clever algorithm for computing the
primes less than N

O L
s

1.Write a consecutive list of integers from 2 to N

2.Find the smallest number not marked as prime and

not crossed out. Mark it prime and cross out all of its
multiples.

3.Goto 2.

Finding all the primes

RRRRREERERSRo
xO2ARERERS

wNNNRRERER
~SRGESRERES
s NNESNERER
LWHARERERER
wNNSERERER

M M M ™ 33
M~ N T W

znnnnnnnun
1”34 67””

Scheme sieve

(define (sieve S)
: run the sieve of Eratosthenes
(scons (scar S)
(sieve
(sfilter
(lambda (x) (> (modulo x (scar S)) 0))

(scdr 5)))))

(define primes (sieve (scdr integers)))

Remembering values

* We can further improve the efficiency of streams by
arranging for automatically convert to a list
representation as they are examined.

* Each delayed computation will be done once, no matter
how many times the stream is examined.
* To do this, change the definition of SCDR so that

—If the cdr of the cons cell is a function (presumable a
delayed computation) it calls it and destructively replaces
the pointer in the cons cell to point to the resulting value.

—If the cdr of the cons cell is not a function, it just returns it

Summary

e Scheme’s functional foundation shows its
power here

* Closures and macros let us define delay and
force

* Which allows us to handle large, even infinte
streams easily

e Other languages, including Python, also let us
do this

