CMSC 331 Midterm Exam, Spring 2011
Name:
UMBC username:

You will have seventy-five (75) minutes to complete this closed book/notes exam. Use the backs of
these pages if you need more room for your answers. Describe any assumptions you make in solv-
ing a problem. We reserve the right to assign partial credit, and to deduct points for answers that
are needlessly wordy.

1. True/False [14]

For each of the following questions, circle T (true) or F (false).

TF 1.1 PASCAL was designed as a programming language for scientific and engineering applica-
tions.

T F 1.2 The procedural programming paradigm treats user-defined procedures as first class objects.

TF 1.3 The “Von Neumann” computer architecture is still used as the basis for most computers
today.

TF 1.4 Any finite language can be defined by a regular expression.

TF 1.5 Attribute grammars can specify languages that cannot be specified using a context free
grammar alone.

TF 1.6 A recursive descent parser cannot be used to parse strings generated by an ambiguous
grammar.

TF 1.7 The entire syntax of complex programming languages like Java cannot be defined using
regular expressions.

TF 1.8 A non-deterministic finite automaton for a regular language generally has fewer states than
a deterministic one, but is harder to apply to a string to see if it matches.

TF 1.9 If the grammar for a language is unambiguous, then there is only one way to parse each
valid sentence in that language.

TF 1.10 The EBNF notation allows one to define grammars that cannot be defined using the sim-
pler BNF notation.

TF 1.11 An operator’s precedence determines whether it associates to the left or right.

TF 1.12 Specifying how else clauses match with the right if keyword is done by adjusting the
precedence of the if, then and else operators.

T F 1.13 The prefix operations of Lisp-like languages eliminates the need to define operator prece-
dence.

T F 1.14 In Scheme, evaluating a macro requires looking up the pattern assigned to that macro.

Page 1 of 8

331Midterm Exam April 4, 2011

2. General multiple-choice questions [20]
Place a check mark next to all of the correct answers and only the correct answers.

2.1 Which of the following is considered an object-oriented programming language?
_ (a) Lisp;

__ (b)) CHH

___ (c)Pascal;

____(d) Scheme;

___(e)Java

___ (g) Algol

2.2 Left factoring is a technique that can be used to

____ (a) prepare a grammar for use in a recursive descent parser;
_____(b) produce a left most derivation of a string from a grammar;
___(c) remove left recursion from a grammar;

____ (d) factor out left associative operators;

____(e) eliminate a terminal from the left side of a grammar rule;
____(f) none of the previous answers.

2.3 In general, a recursive descent parser

____ (a) processes the input symbols from left to right;

____(b) produces an abstract syntax tree;

____ (c) looks ahead at most one input symbol before knowing what action to take;
____(d) takes more time than other parsers for the same language.

2.4 Attribute grammars are used to

___(a) model the basic syntax of a programming language;
____(b) specify non-deterministic finite state machines;

____ (c) specify the static semantics of a programming language;
____(d) specify the dynamic semantics of a programming language.

2.5 The purpose of axiomatic semantics is to

____ (a) prevent and detect logic errors in programs;
____(b) cause functional programs to use less memory;
____ (c) make sure loop invariants hold during loops;
____(d) prove that programs are correct;

____(e)all of the above.

2.6 In functional programming languages, a tail-recursive algorithm is generally better than a non-
tail recursive algorithm because

____(a) it can be run without growing the stack to excess;

_____(b) it is easier to understand;

___ (c)it1s faster;

____(d) all of the above.

Page 2 of 8

331Midterm Exam April 4, 2011

2.7 In a static-scoped language like Scheme, a free variable in a function is looked up in
____(a) the local environment(s), then the global environment;

_____(b) the local environment(s), then in the environment(s) of the calling function;
____(c) the global environment, since free variables are global;

_____(d) none of the above.

2.8 Which of the following Scheme expressions would be interpreted as false when evaluated:
_ @0

_ (b)-1

_ (c)null;

_ (d)#f

___ (e) (lambda () #f);

_ D0

__(2) ((lambda () #1)).

2.9 In Lisp (or Scheme) the cons operators is used to
____(a) create dotted pairs

____ (b) add atoms at the end of a list

____ (c)access the address register on older computers
____(d) create other data structures such as hash tables

2.10 In Scheme, evaluating a lambda expression always returns
___ (a) an environment;

____(b) avariable type;

____ (c) afunction;

____(d) a conditional;

____(e) adotted pair.

Page 3 of 8

331Midterm Exam April 4, 2011

3. Operators [14]

In the BNF grammar shown, x and y are terminals, all non-terminals are in angle brackets, and
<tac> is the start symbol. This language has two infix operators represented by # and $.

a) [2] Which operator has higher precedence?

Q) §: <tic> ::= <toe>
_ (i)# <tac> ::= <tic> $ <tac>
(iil) we can’t tell
<toe> ::= (<tac>)
2}2] What is the associativity of the $ opera- <tic> ::= <tic> # <toe>
(i) left; <toe> ::= x|y
_ (i) right; <tac> ::= <tic>

(ii1) we can’t tell

¢) [10] Give a parse tree for the following string: X # X $y

Page 4 of 8

331Midterm Exam

4. Regular expressions [10]
As you know, passwords are the first and most important step in
computer security. To have a password of sufficient strength is

critical. A password is just strong enough if it contains at least
one lower-case letter, one upper-case letter, and one digit.

Examples of good passwords: X12ab, doraymeABC123helloM]J,
7SEVENseven

Examples of bad passwords: password, mycatSam, 1password

This example shows a DFA for the regular
expression 0?2 [12]

Consider the language consisting of just strong enough passwords, that is, strings that have AT LEAST
one lower-case letter, one upper-case letter, and one digit. The alphabet is the lower-case letters a-z, the
upper-case letters A-Z, and the digits 0-9. No other characters need be considered.

[10] Draw a deterministic finite automaton (DFA) for this language. Feel free to define a class of characters
using a notation like the following, so that you can use such a class name on an arc in your DFA. (Hint: you

might need to have several states.)
DIG: [0-9]

LOWER: [a-2z]
UPPER: [A-Z]

Page 5 of 8

331Midterm Exam April 4, 2011

5. Constructing s-expressions [12]
Consider the Scheme data Structure that when printed looks like ((3 (2)) (1))

5.1 [6] Give a Scheme expression using only the cons function that will create this list. Use the
variable null for the empty list.

5.2 [6] Assuming that we’ve done (define X "((3 (2)) (1)) give a Scheme expression using
only the functions car and cdr and variable X that returns the three symbols in the list.

symbol s-expression to return the symbol
1

2

Page 6 of 8

331Midterm Exam April 4, 2011

6. Lisp and Scheme I [16]

Consider a function prefix with two arguments, both of which are proper lists. It returns true if the
first is a prefix of the second.

> (starts null '(1 2 3 4))

#t

> (starts '(1 2) '(1 2 3 4))
#t

> (starts (123 4) '(123))
#f

> (starts '(1 2 x) (1 234))
#f

> (starts '(1 2) '(1 2))

#t

> (starts (1 2) '())

#f

Here is an incomplete definition of the function. Give code expressions for <S2>, <S3>, <S4> and
<S5> that will complete it.

(define (starts one two)
(cond ((null? one) <S1>)
((null? two) <S2>)

(<S3>
<54>)
(else <S5>)))
<s1> | #t (as an example)
<S2>
<S3>
<S4>
<S5>

Page 7 of 8

331Midterm Exam April 4, 2011
7. Lisp and Scheme II [12]

Consider a function insert with three arguments: an arbitrary s-expression, a proper list, and a posi-
tive integer. The function returns a new list that is the result of inserting the expression into the list
at the position specified by the third argument. Note that positions begin with zero. For example,

> (insert 'X'(a b c) 3)
(abcX)

> (insert '(X) '(abc) 1)
(a(X)bc)

> (insert 'X'(abc)0)
(Xabc)

> (insert‘'X'(abc) 4)
#f

Here is an incomplete definition of the function. Give code expressions for <S1>, <S§2> and <S3>
that will complete it.

(define (insert expr Ist pos)
;; Returns a list like proper list Ist but with expr inserted at
;; the position given by positive integer pos. e.g.:
;; (insert ' X'(abc)2)=>(abXc)
(cond (<S1> (cons expr Ist))
((null? Ist) <S2>)
(else <S3>)))

<S1>

<S2>

<S3>

Page 8 of 8

