
331Midterm Exam April 4, 2011

Page 1 of 8

1 14/
2 20/
3 14/
4 12/
5 12/
6 16/
7 12/

100/

 CMSC 331 Midterm Exam, Spring 2011

Name: _________________________________

UMBC username:_____________________________

You will have seventy-five (75) minutes to complete this closed book/notes exam. Use the backs of
these pages if you need more room for your answers. Describe any assumptions you make in solv-
ing a problem. We reserve the right to assign partial credit, and to deduct points for answers that
are needlessly wordy.

1. True/False [14]

For each of the following questions, circle T (true) or F (false).

T F 1.1 PASCAL was designed as a programming language for scientific and engineering applica-

tions.
T F 1.2 The procedural programming paradigm treats user-defined procedures as first class objects.
T F 1.3 The “Von Neumann” computer architecture is still used as the basis for most computers

today.
T F 1.4 Any finite language can be defined by a regular expression.
T F 1.5 Attribute grammars can specify languages that cannot be specified using a context free

grammar alone.
T F 1.6 A recursive descent parser cannot be used to parse strings generated by an ambiguous

grammar.
T F 1.7 The entire syntax of complex programming languages like Java cannot be defined using

regular expressions.
T F 1.8 A non-deterministic finite automaton for a regular language generally has fewer states than

a deterministic one, but is harder to apply to a string to see if it matches.
T F 1.9 If the grammar for a language is unambiguous, then there is only one way to parse each

valid sentence in that language.
T F 1.10 The EBNF notation allows one to define grammars that cannot be defined using the sim-

pler BNF notation.
T F 1.11 An operator’s precedence determines whether it associates to the left or right.
T F 1.12 Specifying how else clauses match with the right if keyword is done by adjusting the

precedence of the if, then and else operators.
T F 1.13 The prefix operations of Lisp-like languages eliminates the need to define operator prece-

dence.
T F 1.14 In Scheme, evaluating a macro requires looking up the pattern assigned to that macro.

331Midterm Exam April 4, 2011

Page 2 of 8

2. General multiple-choice questions [20]

Place a check mark next to all of the correct answers and only the correct answers.

2.1 Which of the following is considered an object-oriented programming language?
____(a) Lisp;
____(b) C++;
____(c) Pascal;
____(d) Scheme;
____(e) Java
____(g) Algol

2.2 Left factoring is a technique that can be used to
____(a) prepare a grammar for use in a recursive descent parser;
____(b) produce a left most derivation of a string from a grammar;
____(c) remove left recursion from a grammar;
____(d) factor out left associative operators;
____(e) eliminate a terminal from the left side of a grammar rule;
____(f) none of the previous answers.

2.3 In general, a recursive descent parser
____(a) processes the input symbols from left to right;
____(b) produces an abstract syntax tree;
____(c) looks ahead at most one input symbol before knowing what action to take;
____(d) takes more time than other parsers for the same language.

2.4 Attribute grammars are used to
____(a) model the basic syntax of a programming language;
____(b) specify non-deterministic finite state machines;
____(c) specify the static semantics of a programming language;
____(d) specify the dynamic semantics of a programming language.

2.5 The purpose of axiomatic semantics is to
____(a) prevent and detect logic errors in programs;
____(b) cause functional programs to use less memory;
____(c) make sure loop invariants hold during loops;
____(d) prove that programs are correct;
____(e) all of the above.

2.6 In functional programming languages, a tail-recursive algorithm is generally better than a non-
tail recursive algorithm because
____(a) it can be run without growing the stack to excess;
____(b) it is easier to understand;
____(c) it is faster;
____(d) all of the above.

331Midterm Exam April 4, 2011

Page 3 of 8

2.7 In a static-scoped language like Scheme, a free variable in a function is looked up in
____(a) the local environment(s), then the global environment;
____(b) the local environment(s), then in the environment(s) of the calling function;
____(c) the global environment, since free variables are global;
____(d) none of the above.

2.8 Which of the following Scheme expressions would be interpreted as false when evaluated:
____(a) 0;
____(b) -1;
____(c) null;
____(d) #f;
____(e) (lambda () #f);
____(f) ‘()
____(g) ((lambda () #f)).

2.9 In Lisp (or Scheme) the cons operators is used to
____(a) create dotted pairs
____(b) add atoms at the end of a list
____(c) access the address register on older computers
____(d) create other data structures such as hash tables

2.10 In Scheme, evaluating a lambda expression always returns
____(a) an environment;
____(b) a variable type;
____(c) a function;
____(d) a conditional;
____(e) a dotted pair.

331Midterm Exam April 4, 2011

Page 4 of 8

3. Operators [14]

In the BNF grammar shown, x and y are terminals, all non-terminals are in angle brackets, and
<tac> is the start symbol. This language has two infix operators represented by # and $.

a) [2] Which operator has higher precedence?
____(i) $;
____(ii) #;
____(iii) we can’t tell

b) [2] What is the associativity of the $ opera-
tor:
____(i) left;
____(ii) right;
____(iii) we can’t tell

 <tic> ::= <toe>

 <tac> ::= <tic> $ <tac>

 <toe> ::= (<tac>)

 <tic> ::= <tic> # <toe>

 <toe> ::= x | y

 <tac> ::= <tic>

c) [10] Give a parse tree for the following string: x # x $ y

331Midterm Exam April 4, 2011

Page 5 of 8

4. Regular expressions [10]

As you know, passwords are the first and most important step in
computer security. To have a password of sufficient strength is
critical. A password is just strong enough if it contains at least
one lower-case letter, one upper-case letter, and one digit.

Examples of good passwords: X12ab, doraymeABC123helloMJ,
7SEVENseven

Examples of bad passwords: password, mycatSam, 1password

Consider the language consisting of just strong enough passwords, that is, strings that have AT LEAST
one lower-case letter, one upper-case letter, and one digit. The alphabet is the lower-case letters a-z, the
upper-case letters A-Z, and the digits 0-9. No other characters need be considered.

 [10] Draw a deterministic finite automaton (DFA) for this language. Feel free to define a class of characters
using a notation like the following, so that you can use such a class name on an arc in your DFA. (Hint: you
might need to have several states.)

DIG: [0-9]
LOWER: [a-z]
UPPER: [A-Z]

This example shows a DFA for the regular
expression 0?[12]

331Midterm Exam April 4, 2011

Page 6 of 8

5. Constructing s-expressions [12]

Consider the Scheme data Structure that when printed looks like ((3 (2)) (1))

5.1 [6] Give a Scheme expression using only the cons function that will create this list. Use the
variable null for the empty list.

5.2 [6] Assuming that we’ve done (define x '((3 (2)) (1)) give a Scheme expression using
only the functions car and cdr and variable x that returns the three symbols in the list.

symbol s-expression to return the symbol
1

2

3

331Midterm Exam April 4, 2011

Page 7 of 8

6. Lisp and Scheme I [16]

Consider a function prefix with two arguments, both of which are proper lists. It returns true if the
first is a prefix of the second.

> (starts null '(1 2 3 4))
#t
> (starts '(1 2) '(1 2 3 4))
#t
> (starts '(1 2 3 4) '(1 2 3))
#f
> (starts '(1 2 x) '(1 2 3 4))
#f
> (starts '(1 2) '(1 2))
#t
> (starts ‘(1 2) '())
#f

Here is an incomplete definition of the function. Give code expressions for <S2>, <S3>, <S4> and
<S5> that will complete it.

(define (starts one two)
 (cond ((null? one) <S1>)
 ((null? two) <S2>)
 (<S3>
 <S4>)
 (else <S5>)))

<S1> #t (as an example)

<S2>

<S3>

<S4>

<S5>

331Midterm Exam April 4, 2011

Page 8 of 8

7. Lisp and Scheme II [12]

Consider a function insert with three arguments: an arbitrary s-expression, a proper list, and a posi-
tive integer. The function returns a new list that is the result of inserting the expression into the list
at the position specified by the third argument. Note that positions begin with zero. For example,

> (insert 'X '(a b c) 3)
(a b c X)
> (insert '(X) '(a b c) 1)
(a (X) b c)
> (insert 'X '(a b c) 0)
(X a b c)
> (insert ‘X ‘(a b c) 4)
#f

Here is an incomplete definition of the function. Give code expressions for <S1>, <S2> and <S3>
that will complete it.

(define (insert expr lst pos)
 ;; Returns a list like proper list lst but with expr inserted at
 ;; the position given by positive integer pos. e.g.:
 ;; (insert 'X '(a b c) 2) => (a b X c)
 (cond (<S1> (cons expr lst))
 ((null? lst) <S2>)
 (else <S3>)))

<S1>

<S2>

<S3>

