Programming Languages
2nd edition
Tucker and Noonan

Chapter 11
Memory Management

C makes it easy to shoot yourself in the foot; C++ makes it
harder, but when you do it blows your whole leg off.
B. Stroustrup

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents

1.1 The Heap
1.2 Implementation of Dynamic Arrays
1.3 Garbage Collection

DN, Coouiioht ©12006 The McGrawehil Coftodhies.tnc, B I0 O A1 - 1 I

11.17 The Heap

The major areas of memory:

Static area: fixed size, fixed content
allocated at compile time
Run-time stack: variable size, variable content
center of control for function call and return
Heap: fixed size, variable content
dynamically allocated objects and data structures

Copyright © 2006 The McGraw-Hill Companies, Inc

The Structure of
Run-Time Memory (x86 architecture)

Fig 11.1
Memory 0 :
addresses 1 Static area
Stack
a-1
a l |
| |
| |
| |
| |
| |
h Heap

Allocating Heap Blocks

In some languages, the function new allocates a block
of heap space to the program.

E.g., new(5) returns the address of the next block of 5
words available in the heap:

B 7 | under | 12 0 BT 7 | wnder | 12 0
unused | wnwved | wnwved wunused | unused | unused
undef | 0 | wnaved | unused undef | 0 | undef | undef
wnused | unused | wnuwved | wnwved undef undef | wnused

Stack and Heap Overflow

Stack overflow occurs when the top of stack, a, would
exceed its (fixed) limit, 4.

Heap overflow occurs when a call to new occurs and
the heap does not have a large enough block

available to satisty the call.

Copyright © 2006 The McGraw-Hill Companies, Inc.

e —

11.2 One Implementation of Dynamic
Arrays

Consider the declaration int A[n];

I[ts meaning 1s:
1. Compute addr(A[0O]) = new(n).
2. Push addr(A[0]) onto the stack.
3. Push n onto the stack.
4. Push Int onto the stack.

Step 1 creates a heap block for A.
Steps 2-4 create the dope vector for A in the stack.

Copyright © 2006 The McGraw-Hill Companies, Inc

Stack and Heap Allocation for int A[10];
Fig 11.3

Stack Heap
' : h
addfAO) [:Eif :;L, .ﬁ:
0) e
a-1 int vector

Array References

The meaning of an ArrayRef ar for an array declaration ad
1S:

1. Compute addr(ad[ar.index]) = addr(ad[0])+ar.index-1
2. If addr(ad[O])=addr(ad[ar.index])<addr(ad[0])+ad.size,
return the value at addr(ad[ar.index])

3. Otherwise, signal an index-out-of-range error.

E.g., consider the ArrayRef A[5]. The value of A[5] is addressed by
addr(A[0])+4.

Note: this definition includes run-time range checking.

Copyright © 2006 The McGraw-Hill Companies, Inc

Array Assignments

The meaning of an Assignment as is:
1. Compute addr(ad[ar.index])=addr(ad[O])+ar.index-1
2. If
addr(ad[0])=addr(ad[ar.index])<addr(ad[0])+ad.size
then assign the value of as.source to addr(ad[ar.index)).

3. Otherwise, signal an index-out-of-range error.

E.g., The assignment A[5]=3 changes the value at heap address
addr(A[O])+4 to 3, since

ar.index=5 and addr(A[5)=addr(A[O])+4.

Copyright © 2006 The McGraw-Hill Companies, Inc

11.3 Garbage Collection

Garbage 1s a block of heap memory that cannot be
accessed by the program.

Garbage can occur when either:

1. An allocated block of heap memory has no reference to it
(an “orphan”), or

2. A reference exists to a block of memory that is no longer
allocated (a “widow”).

Copyright © 2006 The McGraw-Hill Companies, Inc.

Garbage Example (Fig 11.4)

class node { p = new node();

int value; q = new node();

node next; q=p;
} delete p;
node p, q;
p—> p—> 2 y
q—> q q

(a) (b)

Garbage Collection Algorithms

Garbage collection 1s any strategy that reclaims
unused heap blocks for later use by the program.

Three classical garbage collection strategies:

— Reference Counting - occurs whenever a heap block is
allocated, but doesn’t detect all garbage.

— Mark-Sweep - Occurs only on heap overflow, detects all
garbage, but makes two passes on the heap.

— Copy Collection - Faster than mark-sweep, but reduces

the size of the heap space.

Copyright © 2006 The McGraw-Hill Companies, Inc

11.3.1 Reference Counting

The heap 1s a chain of nodes (the free list).
Each node has a reference count (RC).
For an assignment, like = p, garbage can occur:

r Reference count (RC)
free_list ——> 0 —|—o0 ... ——0 null
p ___ .
/--3- ;i--z-
q — ‘\ \
- - - - - - "
o [1 '

But not all garbage is collected...

Since q’s node has RC=0, the RC for each of its descendents is
reduced by 1, it is returned to the free list, and this process
repeats for its descendents, leaving:

p——> 3 null 1

R A

0 \ 1

~ =

Note the orphan chain on the right.

LN O] SO OO Gopiiight ©12006 The McGrawHil Coftofies. In NN TN S—

11.3.2 Mark-Sweep

Each node in the free [ist has a mark bit (MB) 1nitially 0.
Called only when heap overflow occurs:

Pass I: Mark all nodes that are (directly or indirectly)
accessible from the stack by setting their MB=1.

Pass II: Sweep through the entire heap and return all
unmarked (MB=0) nodes to the free list.

Note: all orphans are detected and returned to the free list.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Heap after Pass | of Mark-Sweep

Triggered by g=new node() and free list = null.
All accessible nodes are marked 1.

free_list | null 1 — .. —1 null
P— | /
> / 0
ol 0 \

Heap after Pass |l of Mark-Sweep

Now free list 1s restored and
the assignment q=new node() can proceed.

0 — . ——>0 null

""/

p \ - - [B
T / '
0 v 0 11
T \
free_list > 0 :E-(-)- \
' n

11.3.3 Copy Collection

Heap partitioned into two halves; only one is active.
Triggered by q=new node() and fiee list outside the active half:

h
from_space . _ 1
p ;/’ ~_ v
q ™~ N
free =

to_space

Accessible nodes copied to other half

h

from_space

n

Note: The accessible nodes are packed, orphans are returned to
the free list, and the two halves reverse roles.
_ BN N

Garbage Collection Summary

* Modern algorithms are more elaborate.

— Most are hybrids/refinements of the above three.
* In Java, garbage collection 1s built-in.

— runs as a low-priority thread.

— Also, System.gc may be called by the program.
* Functional languages have garbage collection built-in.

e (C/C++ default garbage collection to the programmer.

Copyright © 2006 The McGraw-Hill Companies, Inc

