

Copyright © 2006 The McGraw-Hill Companies, Inc.

Programming Languages  
2nd edition  

Tucker and Noonan"

Chapter 11
Memory Management

C makes it easy to shoot yourself in the foot; C++ makes it

harder, but when you do it blows your whole leg off. "
" " " " " " " " " " " "B. Stroustrup"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Contents"

"
11.1 The Heap"
11.2 Implementation of Dynamic Arrays"
11.3 Garbage Collection"

Copyright © 2006 The McGraw-Hill Companies, Inc.

11.1 The Heap"

The major areas of memory:

 Static area: fixed size, fixed content
 allocated at compile time
 Run-time stack: variable size, variable content
 center of control for function call and return
 Heap: fixed size, variable content
 dynamically allocated objects and data structures

Copyright © 2006 The McGraw-Hill Companies, Inc.

The Structure of  
Run-Time Memory (x86 architecture) 
Fig 11.1"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Allocating Heap Blocks"

In some languages, the function new allocates a block
of heap space to the program.
E.g., new(5) returns the address of the next block of 5

words available in the heap:

Copyright © 2006 The McGraw-Hill Companies, Inc.

Stack and Heap Overflow"

Stack overflow occurs when the top of stack, a, would
exceed its (fixed) limit, h.

Heap overflow occurs when a call to new occurs and

the heap does not have a large enough block
available to satisfy the call.

Copyright © 2006 The McGraw-Hill Companies, Inc.

11.2 One Implementation of Dynamic
Arrays"
Consider the declaration int A[n];"
"
Its meaning is:

 1. Compute addr(A[0]) = new(n).
 2. Push addr(A[0]) onto the stack.
 3. Push n onto the stack.
 4. Push int onto the stack.

Step 1 creates a heap block for A.
Steps 2-4 create the dope vector for A in the stack.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Stack and Heap Allocation for int A[10];  
Fig 11.3"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Array References"

The meaning of an ArrayRef ar for an array declaration ad
is:

 1. Compute addr(ad[ar.index]) = addr(ad[0])+ar.index-1
 2. If addr(ad[0])≤addr(ad[ar.index])<addr(ad[0])+ad.size,
 return the value at addr(ad[ar.index])
 3. Otherwise, signal an index-out-of-range error.

E.g., consider the ArrayRef A[5]. The value of A[5] is addressed by

addr(A[0])+4.
Note: this definition includes run-time range checking.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Array Assignments"

The meaning of an Assignment as is:
 1. Compute addr(ad[ar.index])=addr(ad[0])+ar.index-1
 2. If

 addr(ad[0])≤addr(ad[ar.index])<addr(ad[0])+ad.size"
""then assign the value of as.source to addr(ad[ar.index]).
 3. Otherwise, signal an index-out-of-range error.

E.g., The assignment A[5]=3 changes the value at heap address

addr(A[0])+4 to 3, since
"ar.index=5 and addr(A[5])=addr(A[0])+4.

Copyright © 2006 The McGraw-Hill Companies, Inc.

11.3 Garbage Collection"

Garbage is a block of heap memory that cannot be
accessed by the program.

Garbage can occur when either:

 1. An allocated block of heap memory has no reference to it
(an “orphan”), or

 2. A reference exists to a block of memory that is no longer
allocated (a “widow”).

Copyright © 2006 The McGraw-Hill Companies, Inc.

Garbage Example (Fig 11.4)"

class node {"
"int value;"
"node next;"

}"
node p, q;"

p = new node();"
q = new node();"
q= p;"
delete p;"

Copyright © 2006 The McGraw-Hill Companies, Inc.

Garbage Collection Algorithms"

Garbage collection is any strategy that reclaims
unused heap blocks for later use by the program.

Three classical garbage collection strategies:

–  Reference Counting - occurs whenever a heap block is
allocated, but doesn’t detect all garbage.

–  Mark-Sweep - Occurs only on heap overflow, detects all
garbage, but makes two passes on the heap.

–  Copy Collection - Faster than mark-sweep, but reduces
the size of the heap space.

Copyright © 2006 The McGraw-Hill Companies, Inc.

11.3.1 Reference Counting"

The heap is a chain of nodes (the free_list).
Each node has a reference count (RC).
For an assignment, like q = p, garbage can occur:

Copyright © 2006 The McGraw-Hill Companies, Inc.

But not all garbage is collected…"

Since q’s node has RC=0, the RC for each of its descendents is
reduced by 1, it is returned to the free list, and this process
repeats for its descendents, leaving:

Note the orphan chain on the right.

Copyright © 2006 The McGraw-Hill Companies, Inc.

11.3.2 Mark-Sweep"

Each node in the free_list has a mark bit (MB) initially 0.
Called only when heap overflow occurs:

Pass I: Mark all nodes that are (directly or indirectly)

accessible from the stack by setting their MB=1.

Pass II: Sweep through the entire heap and return all

unmarked (MB=0) nodes to the free list.

Note: all orphans are detected and returned to the free list.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Heap after Pass I of Mark-Sweep"

Triggered by q=new node() and free_list = null.
All accessible nodes are marked 1.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Heap after Pass II of Mark-Sweep"

Now free_list is restored and
the assignment q=new node() can proceed.

Copyright © 2006 The McGraw-Hill Companies, Inc.

11.3.3 Copy Collection"
Heap partitioned into two halves; only one is active.
Triggered by q=new node() and free_list outside the active half:

Copyright © 2006 The McGraw-Hill Companies, Inc.

Accessible nodes copied to other half"

Note: The accessible nodes are packed, orphans are returned to
the free_list, and the two halves reverse roles.

Copyright © 2006 The McGraw-Hill Companies, Inc.

Garbage Collection Summary"

•  Modern algorithms are more elaborate.
–  Most are hybrids/refinements of the above three.

•  In Java, garbage collection is built-in.
–  runs as a low-priority thread.

–  Also, System.gc may be called by the program.
•  Functional languages have garbage collection built-in.
•  C/C++ default garbage collection to the programmer.

