
Tail	
 Recursion	

Problems	
 with	
 Recursion	

•  Recursion	
 is	
 generally	
 favored	
 over	
 itera3on	
 in	

Scheme	
 and	
 many	
 other	
 languages	

–  It’s	
 elegant,	
 minimal,	
 can	
 be	
 implemented	
 with	

regular	
 func3ons	
 and	
 easier	
 to	
 analyze	
 formally	

–  Some	
 languages	
 don’t	
 have	
 itera3on	
 (Prolog)	

•  It	
 can	
 also	
 be	
 less	
 efficient	

more	
 func3onal	
 calls	
 and	
 stack	
 opera3ons	
 (context	

saving	
 and	
 restora3on)	

•  Running	
 out	
 of	
 stack	
 space	
 leads	
 to	
 failure	

deep	
 recursion	
 	

Tail	
 recursion	
 is	
 itera4on	

•  Tail	
 recursion	
 is	
 a	
 paEern	
 of	
 use	
 that	
 can	
 be	

compiled	
 or	
 interpreted	
 as	
 itera3on,	
 avoiding	

the	
 inefficiencies	

•  A	
 tail	
 recursive	
 func3on	
 is	
 one	
 where	
 every	

recursive	
 call	
 is	
 the	
 last	
 thing	
 done	
 by	
 the	

func3on	
 before	
 returning	
 and	
 thus	
 produces	

the	
 func3on’s	
 value	

•  More	
 generally,	
 we	
 iden3fy	
 some	
 proceedure	

calls	
 as	
 tail	
 calls	

Tail	
 Call	

A	
 tail	
 call	
 is	
 a	
 procedure	
 call	
 inside	
 another	

procedure	
 that	
 returns	
 a	
 value	
 which	
 is	
 then	

immediately	
 returned	
 by	
 the	
 calling	
 procedure	

def foo(data):
 bar1(data)
 return bar2(data)

def foo(data):
 if test(data):
 return bar2(data)
 else:
 return bar3(data)

A tail call need not come at the textual end of the
procedure, but at one of its logical ends

Tail	
 call	
 op3miza3on	

•  When	
 a	
 func3on	
 is	
 called,	
 we	
 must	
 remember	

the	
 place	
 it	
 was	
 called	
 from	
 so	
 we	
 can	
 return	

to	
 it	
 with	
 the	
 result	
 when	
 the	
 call	
 is	
 complete	

•  This	
 is	
 typically	
 stored	
 on	
 the	
 call	
 stack	

•  There	
 is	
 no	
 need	
 to	
 do	
 this	
 for	
 tail	
 calls	

•  Instead,	
 we	
 leave	
 the	
 stack	
 alone,	
 so	
 the	

newly	
 called	
 func3on	
 will	
 return	
 its	
 result	

directly	
 to	
 the	
 original	
 caller	

Scheme’s	
 top	
 level	
 loop	

•  Consider	
 a	
 simplified	
 version	
 of	
 the	
 REPL	

(define	
 (repl)	

	
 	
 	
 	
 (prinM	
 “>	
 “)	

	
 	
 	
 	
 (print	
 (eval	
 (read)))	

	
 	
 	
 	
 (repl))	

•  This	
 is	
 an	
 easy	
 case:	
 with	
 no	
 parameters	
 there	

is	
 not	
 much	
 context	

Scheme’s	
 top	
 level	
 loop	
 2	

•  Consider	
 a	
 fancier	
 REPL	

(define	
 (repl)	
 (repl1	
 0))	

(define	
 (repl1	
 n)	

	
 	
 	
 	
 (prinM	
 “~s>	
 “	
 n)	

	
 	
 	
 	
 (print	
 (eval	
 (read)))	

	
 	
 	
 	
 (repl1	
 (add1	
 n)))	

•  This	
 is	
 only	
 slightly	
 harder:	
 just	
 modify	
 the	

local	
 variable	
 n	
 and	
 start	
 at	
 the	
 top	

Scheme’s	
 top	
 level	
 loop	
 3	

•  There	
 might	
 be	
 more	
 than	
 one	
 tail	
 recursive	
 call	
 	

(define	
 (repl1	
 n)	

	
 	
 	
 	
 (prinM	
 “~s>	
 “	
 n)	

	
 	
 	
 	
 (print	
 (eval	
 (read)))	

	
 	
 	
 	
 (if	
 (=	
 n	
 9)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (repl1	
 0)	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (repl1	
 (add1	
 n))))	

•  What’s	
 important	
 is	
 that	
 there’s	
 nothing	
 more	

to	
 do	
 in	
 the	
 func3on	
 aWer	
 the	
 recursive	
 calls	

Two	
 skills	

•  Dis3nguishing	
 a	
 trail	
 recursive	
 call	
 from	
 a	
 non	

tail	
 recursive	
 one	

•  Being	
 able	
 to	
 rewrite	
 a	
 func3on	
 to	
 eliminate	

its	
 non-­‐tail	
 recursive	
 calls	
 	

Simple	
 Recursive	
 Factorial	

(define	
 (fact1	
 n)	

	
 	
 ;;	
 naive	
 recursive	
 factorial	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 (if	
 (<	
 n	
 1)	

	
 	
 	
 	
 	
 	
 1	

	
 	
 	
 	
 	
 	
 (*	
 n	
 (fact1	
 (sub1	
 n))	
)))	

Is	
 this	
 a	
 tail	
 call?	

No.	
 It	
 must	
 be	
 called	
 and	
 its	

value	
 returned	
 before	
 the	

mul3plica3on	
 can	
 be	
 done	

Tail	
 recursive	
 factorial	

(define	
 (fact2	
 n)	

	
 	
 	
 ;	
 rewrite	
 to	
 just	
 call	
 the	
 tail-­‐recursive	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 ;	
 factorial	
 with	
 the	
 appropriate	
 ini3al	
 values	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 (fact2.1	
 n	
 1))	

(define	
 (fact2.1	
 n	
 accumulator)	

;	
 tail	
 recursive	
 factorial	
 calls	
 itself	

;	
 as	
 last	
 thing	
 to	
 be	
 done	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	

	
 	
 	
 (if	
 (<	
 n	
 1)	

	
 	
 	
 	
 	
 	
 	
 accumulator	

	
 	
 	
 	
 	
 	
 	
 (fact2.1	
 (sub1	
 n)	
 (*	
 accumulator	
 n))	
))	

Is	
 this	
 a	
 tail	
 call?	

Yes.	
 Fact2.1’s	

args	
 are	
 evalua-­‐
ted	
 before	
 it’s	

called.	

Trace	
 shows	
 what’s	

going	
 on	

>	
 (requireracket/trace)	

>	
 (load	
 "fact.ss")	

>	
 (trace	
 fact1)	

>	
 (fact1	
 6)	

|(fact1 6)
| (fact1 5)
| |(fact1 4)
| | (fact1 3)
| | |(fact1 2)
| | | (fact1 1)
| | | |(fact1 0)
| | | |1
| | | 1
| | |2
| | 6
| |24
| 120
|720
720

fact2	
 	

>	
 (trace	
 fact2	
 fact2.1)	

>	
 (fact2	
 6)	

|(fact2	
 6)	

|(fact2.1	
 6	
 1)	

|(fact2.1	
 5	
 6)	

|(fact2.1	
 4	
 30)	

|(fact2.1	
 3	
 120)	

|(fact2.1	
 2	
 360)	

|(fact2.1	
 1	
 720)	

|(fact2.1	
 0	
 720)	

|720	

720	

•  Interpreter & compiler note
the last expression to be
evaled & returned in
fact2.1 is a recursive call

•  Instead of pushing state
on the sack, it reassigns
the local variables and
jumps to beginning of the
procedure

•  Thus, the recursion is
automatically transformed
into iteration

Reverse	
 a	
 list	

•  This	
 version	
 works,	
 but	
 has	
 two	
 problems	

(define	
 (rev1	
 list)	

	
 	
 ;	
 returns	
 the	
 reverse	
 a	
 list	

	
 	
 (if	
 (null?	
 list)	

	
 	
 	
 	
 	
 	
 	
 empty	

	
 	
 	
 	
 	
 	
 	
 (append	
 (rev1	
 (rest	
 list))	
 	
 (list	
 (first	
 list))))))	

•  It	
 is	
 not	
 tail	
 recursive	

•  It	
 creates	
 needless	
 temporary	
 lists	

A	
 be?er	
 reverse	

(define 	
 (rev2	
 list)	
 (rev2.1	
 list	
 empty))	

(define	
 (rev2.1	
 list	
 reversed)	

	
 	
 (if	
 (null?	
 list)	

	
 	
 	
 	
 	
 	
 reversed	

	
 	
 	
 	
 	
 	
 (rev2.1	
 (rest	
 list)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (cons	
 (first	
 list)	
 reversed))))	

rev1	
 and	
 rev2	

>	
 (load	
 "reverse.ss")	

>	
 (trace	
 rev1	
 rev2	
 rev2.1)	

>	
 (rev1	
 '(a	
 b	
 c))	

|(rev1	
 (a	
 b	
 c))	

|	
 (rev1	
 (b	
 c))	

|	
 |(rev1	
 (c))	

|	
 |	
 (rev1	
 ())	

|	
 |	
 ()	

|	
 |(c)	

|	
 (c	
 b)	

|(c	
 b	
 a)	

(c	
 b	
 a)	

>	
 (rev2	
 '(a	
 b	
 c))	

|(rev2	
 (a	
 b	
 c))	

|(rev2.1	
 (a	
 b	
 c)	
 ())	

|(rev2.1	
 (b	
 c)	
 (a))	

|(rev2.1	
 (c)	
 (b	
 a))	

|(rev2.1	
 ()	
 (c	
 b	
 a))	

|(c	
 b	
 a)	

(c	
 b	
 a)	

>	
 	

The	
 other	
 problem	

•  Append	
 copies	
 the	
 top	
 level	
 list	
 structure	
 of	

it’s	
 first	
 argument.	

•  (append	
 ‘(1	
 2	
 3)	
 ‘(4	
 5	
 6))	
 	
 creates	
 a	
 copy	
 of	
 the	

list	
 (1	
 2	
 3)	
 and	
 changes	
 the	
 last	
 cdr	
 pointer	
 to	

point	
 to	
 the	
 list	
 (4	
 5	
 6)	

•  In	
 reverse,	
 each	
 3me	
 we	
 add	
 a	
 new	
 element	

to	
 the	
 end	
 of	
 the	
 list,	
 we	
 are	
 (re-­‐)copying	
 the	

list.	

Append	
 (two	
 args	
 only)	

(define	
 (append	
 list1	
 list2)	

	
 	
 	
 	
 (if	
 (null?	
 list1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 list2	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (cons	
 (first	
 list1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (append	
 (rest	
 list1)	
 list2))))	
 	

Why	
 does	
 this	
 ma?er?	

•  The	
 repeated	
 rebuilding	
 of	
 the	
 reversed	
 list	
 is	

needless	
 work	

•  It	
 uses	
 up	
 memory	
 and	
 adds	
 to	
 the	
 cost	
 of	

garbage	
 collec3on	
 (GC)	

•  GC	
 adds	
 a	
 significant	
 overhead	
 to	
 the	
 cost	
 of	

any	
 system	
 that	
 uses	
 it	

•  Experienced	
 programmers	
 avoid	
 algorithms	

that	
 needlessly	
 consume	
 memory	
 that	
 must	

be	
 garbage	
 collected	

Fibonacci	

•  Another	
 classic	
 recursive	
 func3on	
 is	
 compu3ng	

the	
 nth	
 number	
 in	
 the	
 fibonacci	
 series	

(define	
 (fib	
 n)	
 	

	
 	
 (if	
 (<	
 n	
 2)	
 	

	
 	
 	
 	
 	
 	
 n	

	
 	
 	
 	
 	
 	
 (+	
 (fib	
 (-­‐	
 n	
 1))	
 	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (fib	
 (-­‐	
 n	
 2)))))	

•  But	
 its	
 grossly	
 inefficient	

– Run	
 3me	
 for	
 fib(n)	
 	
 ≅	
 O(2n)	

–  (fib	
 100)	
 can	
 not	
 be	
 computed	
 this	
 way	

Are	
 the	
 tail	
 calls?	

This	
 has	
 two	
 problems	

• That	
 recursive	
 calls	

are	
 not	
 tail	
 recursive	

is	
 the	
 least	
 of	
 its	

problems	

• It	
 also	
 needlessly	

recomputes	
 many	

values	

fib(6)	

Fib(5)	
 Fib(4)	

Fib(4)	
 Fib(3)	
 Fib(3)	
 Fib(2)	

Fib(3)	
 Fib(2)	
 Fib(2)	
 Fib(1)	

Trace	
 of	
 (fib	
 6)	

>	
 (fib	
 6)	

>(fib	
 6)	

>	
 (fib	
 5)	

>	
 >(fib	
 4)	

>	
 >	
 (fib	
 3)	

>	
 >	
 >(fib	
 2)	

>	
 >	
 >	
 (fib	
 1)	

<	
 <	
 <	
 1	

>	
 >	
 >	
 (fib	
 0)	

<	
 <	
 <	
 0	

<	
 <	
 <1	

>	
 >	
 >(fib	
 1)	

<	
 <	
 <1	

<	
 <	
 2	

>	
 >	
 (fib	
 2)	

>	
 >	
 >(fib	
 1)	

<	
 <	
 <1	

>	
 >	
 >(fib	
 0)	

<	
 <	
 <0	

<	
 <	
 1	

<	
 <3	

>	
 >(fib	
 3)	

>	
 >	
 (fib	
 2)	

>	
 >	
 >(fib	
 1)	

<	
 <	
 <1	

>	
 >	
 >(fib	
 0)	

<	
 <	
 <0	

<	
 <	
 1	

>	
 >	
 (fib	
 1)	

<	
 <	
 1	

<	
 <2	

<	
 5	

>	
 (fib	
 4)	

>	
 >(fib	
 3)	

>	
 >	
 (fib	
 2)	

>	
 >	
 >(fib	
 1)	

<	
 <	
 <1	

>	
 >	
 >(fib	
 0)	

<	
 <	
 <0	

<	
 <	
 1	

>	
 >	
 (fib	
 1)	

<	
 <	
 1	

<	
 <2	

>	
 >(fib	
 2)	

>	
 >	
 (fib	
 1)	

<	
 <	
 1	

>	
 >	
 (fib	
 0)	

<	
 <	
 0	

<	
 <1	

<	
 3	

<8	

8	

>	
 	

Tail-­‐recursive	
 version	
 of	
 Fib	

Here’s	
 a	
 tail-­‐recursive	
 version	
 that	
 runs	
 in	
 0(n)	

(define	
 (fib2	
 n)	

	
 	
 (cond	
 ((=	
 n	
 0)	
 0)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ((=	
 n	
 1)	
 1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (#t	
 (fib-­‐tr	
 n	
 2	
 0	
 1))))	

(define	
 (fib-­‐tr	
 target	
 n	
 f2	
 f1	
)	

	
 	
 	
 	
 (if	
 (=	
 n	
 target)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (+	
 f2	
 f1)	

	
 	
 	
 	
 	
 	
 	
 	
 	
 (fib-­‐tr	
 target	
 (+	
 n	
 1)	
 f1	
 	
 (+	
 f1	
 f2))))	

We pass four args: n
is the current index,
target is the index of
the number we want,
f2 and f1 are the two
previous fib numbers

Trace	
 of	
 (fib2	
 10)	

>	
 (fib2	
 10)	

>(fib2	
 10)	

>(fib-­‐tr	
 10	
 2	
 0	
 1)	

>(fib-­‐tr	
 10	
 3	
 1	
 1)	

>(fib-­‐tr	
 10	
 4	
 1	
 2)	

>(fib-­‐tr	
 10	
 5	
 2	
 3)	

>(fib-­‐tr	
 10	
 6	
 3	
 5)	

>(fib-­‐tr	
 10	
 7	
 5	
 8)	

>(fib-­‐tr	
 10	
 8	
 8	
 13)	

>(fib-­‐tr	
 10	
 9	
 13	
 21)	

>(fib-­‐tr	
 10	
 10	
 21	
 34)	

<55	

55	

10	
 is	
 the	
 target,	
 5	
 is	
 the	

current	
 index	
 	
 fib(3)=2	

and	
 fib(4)=3	

Stop	
 when	
 current	
 index	

equals	
 target	
 and	
 return	

sum	
 of	
 last	
 two	
 args	

Compare	
 to	
 an	
 itera3ve	
 version	

• The	
 tail	
 recursive	
 version	

passes	
 the	
 “loop	

variables”	
 as	
 arguments	

to	
 the	
 recursive	
 calls	

• It’s	
 just	
 a	
 way	
 to	
 do	

itera3on	
 using	
 recursive	

func3ons	
 without	
 the	

need	
 for	
 special	
 itera3on	

operators	

def fib(n):
 if n < 3:
 return 1
 else:
 f2 = f1 = 1
 x = 3
 while x<n:
 f1, f2 = f1 + f2, f1
 return f1 + f2

No	
 tail	
 call	
 elimina3on	
 in	
 many	
 PLs	

•  Many	
 languages	
 don’t	
 op3mize	
 tail	
 calls,	

including	
 C,	
 Java	
 and	
 Python	

•  Recursion	
 depth	
 is	
 constrained	
 by	
 the	
 space	

allocated	
 for	
 the	
 call	
 stack	

•  This	
 is	
 a	
 design	
 decision	
 that	
 might	
 be	
 jus3fied	

by	
 the	
 worse	
 is	
 beEer	
 principle	

•  See	
 Guido	
 van	
 Rossum’s	
 comments	
 on	
 TRE	

Python	
 example	

>	
 def	
 dive(n=1):	

...	
 	
 	
 	
 	
 print	
 n,	

...	
 	
 	
 	
 	
 dive(n+1)	

...	

>>>	
 dive()	

1	
 2	
 3	
 4	
 5	
 6	
 7	
 8	
 9	
 10	
 ...	
 998	
 999	

Traceback	
 (most	
 recent	
 call	
 last):	

	
 	
 File	
 "<stdin>",	
 line	
 1,	
 in	
 <module>	

	
 	
 File	
 "<stdin>",	
 line	
 3,	
 in	
 dive	

	
 	
 ...	
 994	
 more	
 lines	
 ...	

	
 	
 File	
 "<stdin>",	
 line	
 3,	
 in	
 dive	

	
 	
 File	
 "<stdin>",	
 line	
 3,	
 in	
 dive	

	
 	
 File	
 "<stdin>",	
 line	
 3,	
 in	
 dive	

Run3meError:	
 maximum	
 recursion	
 depth	
 exceeded	

>>>	

Conclusion	

• Recursion	
 is	
 an	
 elegant	
 and	
 powerful	
 control	

mechanism	

• We	
 don’t	
 need	
 to	
 use	
 itera3on	

• We	
 can	
 eliminate	
 any	
 inefficiency	
 if	
 we	

Recognize	
 and	
 op3mize	
 tail-­‐recursive	
 calls,	
 turning	

recursion	
 into	
 itera3on	

• Some	
 languages	
 (e.g.,	
 Python)	
 choose	
 not	
 to	

do	
 this,	
 and	
 advocate	
 using	
 itera3on	
 when	

appropriate	

But	
 side-­‐effect	
 free	
 programming	
 remains	
 easier	
 to	

analyze	
 and	
 parallelize	

