Tail Recursion

Problems with Recursion

* Recursion is generally favored over iteration in
Scheme and many other languages

— |It’s elegant, minimal, can be implemented with
regular functions and easier to analyze formally

— Some languages don’t have iteration (Prolog)

e |t can also be less efficient

more functional calls and stack operations (context
saving and restoration)

* Running out of stack space leads to failure
deep recursion

Tail recursion is iteration

* Tail recursion is a pattern of use that can be
compiled or interpreted as iteration, avoiding
the inefficiencies

* A tail recursive function is one where every
recursive call is the last thing done by the

function before returning and thus produces
the function’s value

 More generally, we identify some proceedure
calls as tail calls

Tail Call

A tail call is a procedure call inside another
procedure that returns a value which is then
immediately returned by the calling procedure

def foo(data): def foo(data):
bar1(data) if test(data):
return bar2(data) return bar2(data)
else:

return/ bar3(data)

A tail call need not come at the textual end of the
procedure, but at one of its logical ends

Tail call optimization

When a function is called, we must remember
the place it was called from so we can return
to it with the result when the call is complete

This is typically stored on the call stack
There is no need to do this for tail calls

Instead, we leave the stack alone, so the
newly called function will return its result
directly to the original caller

Scheme’s top level loop

* Consider a simplified version of the REPL
(define (repl)
(printf “> “

(print (eval (read)))

(repl))
* This is an easy case: with no parameters there
is not much context

Scheme’s top level loop 2

* Consider a fancier REPL
(define (repl) (repll 0))
(define (repll n)

(printf “~s> “ n)
(print (eval (read)))
(repll (add1 n)))

* This is only slightly harder: just modify the
local variable n and start at the top

Scheme’s top level loop 3

* There might be more than one tail recursive call
(define (repll n)
(printf “~s> “n)
(print (eval (read)))
(if (=n 9)
(repll 0)
(repll (add1 n))))

 What’s important is that there’s nothing more
to do in the function after the recursive calls

Two skills

* Distinguishing a trail recursive call from a non
tail recursive one

* Being able to rewrite a function to eliminate
its non-tail recursive calls

Simple Recursive Factorial

(define (factl n)
» naive recursive factorial
(if (< n 1)

1
(*n

Is this a tail call?

(factl (subl n))

)

No. It must be called and its

value returned before the

multiplication can be done

Tail recursive factorial

(define (fact2 n)
; rewrite to just call the tail-recursive

; factorial with the appropriate initial values

(fact2.1 n 1))

(define (fact2.1 n accumulator)
: tail recursive factorial calls itself
; as last thing to be done

(if (< n 1)
accumulator

(fact2.1 (sub1 n) (* accumulator n))

)

Trace shows what’s |(fact1 6)

: (fact1 5)
g0INg on (fact1 4)
> (requireracket/trace) (fact1 3)
> (load "fact.ss") (fact1 2)
> (trace factl) (fact1 1)
> (factl 6) I(1fact1 0)

1
2
6
24
120
720

720

> (trace fact2 fact2.1)

> (fact2 6) fa Ctz

(fact2 6) « Interpreter & compiler note
(fact2.16 1) the last expression to be
(fact2.15 6) evaled & returned in

fact2.1 is a recursive call
(fact2.1 4 30)

* Instead of pushing state
(fact2.1 3 120)

on the sack, it reassigns

(fact2.1 2 360) the local variables and
(fact2.1 1 720) jumps to beginning of the
(fact2.1 0 720) procedure

720 Thus, the recursion is

automatically transformed
720 into iteration

Reverse a list

* This version works, but has two problems
(define (revl list)

; returns the reverse a list
(if (null? list)
empty
(append (revl (rest list)) (list (first list))))))
* |tis not tail recursive

* |t creates needless temporary lists

A better reverse

(define (rev2 list) (rev2.1 list empty))

(define (rev2.1 list reversed)
(if (null? list)
reversed
(rev2.1 (rest list)
(cons (first list) reversed))))

(load "reverse.ss")

>
> (trace revl rev2 rev2.1) revj- d nd revz
> (revl '(a b c))

(revl (a b c)) > (rev2 '(a b c))

(revl (b c)) (rev2 (a b c))
(revl (c)) (rev2.1(abc)())
(revl ()) (rev2.1 (b c) (a))
() (rev2.1 (c) (b a))
(c) (rev2.1() (c b a))

(cb) (c b a)

(cba) (c b a)

(cba) >

The other problem

* Append copies the top level list structure of
it’s first argument.

e (append (12 3) (45 6)) creates a copy of the
ist (1 2 3) and changes the last cdr pointer to
nooint to the list (4 5 6)

* |In reverse, each time we add a new element

to the end of the list, we are (re-)copying the
list.

Append (two args only)

(define (append listl list2)
(if (null? list1)
list2
(cons (first list1)
(append (rest listl) list2))))

Why does this matter?

The repeated rebuilding of the reversed list is
needless work

It uses up memory and adds to the cost of
garbage collection (GC)

GC adds a significant overhead to the cost of
any system that uses it

Experienced programmers avoid algorithms
that needlessly consume memory that must
be garbage collected

11

Fibonacci :

* Another classic recursive function is computing

the nth number in the fibonacci series
(define (fib n)
(if (< n 2)

n
(+ (fib (- n 1)) (}
(fib (- n 2)))))

e But its grossly inefficient
— Run time for fib(n) & 0(2M
— (fib 100) can not be computed this way

Fo Fy Fo|F3|Fa Fs Fg F7|Fg Fo Fio|F11| F12| F13| F1a| F1s| F16| Fi7| Fig/ F19| Foo
0 1 1/ 2 3| 5 813|121 34 55 89|144 233 377 610 987|1597 2584|4181 6765

This has two problems

* That recursive calls
are not tail recursive
is the least of its
problems

* It also needlessly
recomputes many
values

> (fib 6)
>(fib 6)

> (fib 5)

> >(fib 4)
> > (fib 3)
> > >(fib 2)
>>> (fib 1)
<<<1
>> > (fib 0)
<<<0
<<<1

>> >(fib 1)
<<<1
<<2

> > (fib 2)
>>>(fib 1)
<<<1

> > >(fib 0)
<<<0
<<1

<<3

> >(fib 3)
> > (fib 2)
>> >(fib 1)

Trace of (fib 6)

<<<1

> > >(fib 0)
<<<0
<<1

> > (fib 1)
<<1
<<2

<5

> (fib 4)

> >(fib 3)
> > (fib 2)
>>>(fib 1)
<<<1

>> >(fib 0)
<<<0
<<1

> > (fib 1)
<<1
<<2

> >(fib 2)
> > (fib 1)
<<1

> > (fib 0)
<<0
<<1

<3

<8

8

>

Tail-recursive version of Fib

Here’s a tail-recursive version that runs in 0(n)
(define (fib2 n)
(cond ((=n 0) 0)

(=n1)1)
(#t (fib-trn 2 0 1))))
]) We pass four args: n
(define (fib-tr target n f2 f1) s the current index.
£ r_ target is the index of
(lf (nta rget) the nu:nber \:ve w);nt,
(+ £2 fl) f2 and f1 are the two

previous fib numbers

(fib-tr target (+ n 1) f1 (+f1f2))))

Trace of (fib2 10)

> (fib2 10)
>(fib2 10)
>(fib-tr 102 0 1)
>(fib-tr 1031 1)
>(fib-tr 104 1 2)

>(fib-tr 10 5 2 3)

>(fib-tr 10 6 3 5)
>(fib-tr 10 7 5 8)
>(fib-tr 10 8 8 13)
>(fib-tr 109 13 21)

~
10 is the target, 5 is the
current index fib(3)=2
and fib(4)=3 y

Stop when current index
equals target and return

>(fib-tr 10 10 21 34)

<55
55

y -

sum of last two args

~

J

Compare to an iterative version

* The tail recursive version
passes the “loop
variables” as arguments
to the recursive calls

* It’s just a way to do
iteration using recursive
functions without the
need for special iteration

operators

def fib(n):

if n < 3:
return 1

else:
f2=f1=1
X =3
while x<n:

f1,f2 =11+ 2, f1

return f1 + {2

No tail call elimination in many PLs

Many languages don’t optimize tail calls,
including C, Java and Python

Recursion depth is constrained by the space
allocated for the call stack

This is a design decision that might be justified
by the worse is better principle

See Guido van Rossum’s comments on TRE

Python example

> def dive(n=1):
print n,
dive(n+1)

>>> dive()
12345678910...998 999
Traceback (most recent call last):

File "<stdin>", line 1, in <module>

File "<stdin>", line 3, in dive

... 994 more lines ...

File "<stdin>", line 3, in dive

File "<stdin>", line 3, in dive

File "<stdin>", line 3, in dive
RuntimeError: maximum recursion depth exceeded
>>>

Conclusion

* Recursion is an elegant and powerful control
mechanism

 We don’t need to use iteration

* We can eliminate any inefficiency if we
Recognize and optimize tail-recursive calls, turning
recursion into iteration

* Some languages (e.g., Python) choose not to
do this, and advocate using iteration when
appropriate

But side-effect free programming remains easier to
analyze and parallelize

