Lists in Lisp
and Scheme

In the beginning
was the cons (or pair) |_1_—‘ﬂ|
What cons really does is combines

two objects into a two-part object a
called a cons in Lisp and a pair in Scheme

Conceptually, a cons is a pair of pointers -- the
first is the car, and the second is the cdr.

Conses provide a convenient representation for
pairs of any type.

The two halves of a cons can point to any kind of
object, including conses.

This is the mechanism for building lists.
(pair?'(12))=>T

Lists in Lisp and Scheme

Lists are Lisp’s fundamental data structures.
However, it is not the only data structure.
= There are arrays, characters, strings, etc.

= Common Lisp has moved on from being
merely a LISt Processor.

However, to understand Lisp and Scheme you
must understand lists

= common functions on them

= how to build other useful data structures
using them.

Pairs

Lists in CL and Scheme are defined as
pairs.
Any non empty list can be considered as a

pair of the first element and the rest of the
list.

We use one half of the cons to point to the
first element of the list, and the other to
point to the rest of the list (which is either
another cons or nil).

Box notation

- nil Where NIL = ()

a

A one element list (A)

L e A iy g

a b c

A list of 3 elements (A B C)

Pair?

The function pair? returns true;if its argument
is a cons (pair? = consp in CL)

So list? could be defined:

(defun myListp (x) (or (null x) (consp x)))

Since everything that is not a pair is an atom,
the predicate atom could be defined:

(defun myAtom (x) (not (pair? x)))
Remember, nilis both an atormand a /ist.

What sort of list is this?

> (set! z (list ‘a (list ‘b ‘c) ‘d)) »(car (cdr z))
(A (B C) D) >7?

Equality

Each time you call cons, Scheme allocates a
new piece of memory with room for 2 pointers.
So if we call cons twice with the same
arguments, we get back two values that look
the same, but are in fact distinct objects:

> (define |1 (cons'a‘()))

(A)

> (define 12 (cons 'a nil)))

> (A)

> (eq?1112)

> #f

> (equal I1 12)

> #t

> (and (eqg? (carI1)(car 12)) (eq? (cdr 1)(cdr 12)))

> #t

Equal?

We also need to be able to ask whether two lists
have the same elements.
CL provides an equality predicate for this, equal.
Eq? returns true only if its arguments are the
same object, and
equal, more or less, returns true if its arguments
would print the same.
> (equal? 1 12)
T
Note: if x and y are eq?, they are also equal?

Does Lisp have pointers?

One of the secrets to understanding Lisp is to
realize that variables have values in the same
way that lists have elements.

As conses have pointers to their elements,
variables have pointers to their values.

What happens, for example, when we set two
variables to the same list:

> (set! x (a b c))
(ABC)

> (set! y x)
(ABC)

This is just like
in Java

Equal?

(define (equal? x y)
- this is ~ how equal? could be defined
(cond ((number? x) (= xY))
((not (pair? X)) (eg? x y))
((not (pair? y)) nil)
((equal (car x) (car y))
(equal (cdr x) (cdry)))))

Does Scheme have pointers?

The location in memory associated with the
variable x does not contain the list itself,
but a pointer to it.

When we assign the same value to vy,
Sccheme copies the pointer, not the list.

Therefore, what would the value of
> (eq? x)
be, #t or #f7?

Building Lists

The function copy-list takes a list and returns
a copy of it.
The new list will have the same elements, but
contained in new conses.

> (set! x (a b ¢))

(A B C)

> (set!ly (copy-list' x))

(A B C)

Spend a few minutes to draw a box diagram
of x and y to show where the pointers point.

Append

TheScheme/Lisp function append returns the
concatenation of any number of lists:

> (append ‘(a b) ‘(c d) ‘(e))
(ABCDE)

Append copies all the arguments except the
last.

nIf it didnt copy all but the last argument,
then it would have to modify the lists
passed as arguments. Such side effects are
very undesirable, especially in functional
languages.

LISP’s Copy-list

Copy-list is a built in function but could be defined
as follows

(define (copy-list s)
(if (not (pair? s))
S
(cons (copy-list (car s))
(copy-list (cdr s)))))

There is also a copy-tree that makes a copy of the
entire s-expression.

append

The two argument version of append could have
been defined like this.
(define (append2 s1 s2)
(if (null? s1)
S2
(cons (car s1)

(append?2 (cdr s1) s2))))

Notice how it ends up copying the top level list
structure of it's first argument.

List access functions

To find the element at a given position in
a list use the function list-ref (nth in CL).

> (list-ref ‘(a b c) 0)
A

and to find the nth cdr, use list-tail
(nthedr in CL).

> (list-tail ‘(a b c) 2)
(©)

Both functions are zero indexed.

Accessing lists

The function /ast returns the last element in a list
> (define (last I)
(if (null? (cdr 1))
((=1g))
(last (cdr1))))
> (last ‘(a b c))
©
Note: in CL, |ast returns the last cons cell

We also have: first, second, third, and CxR, where xis
a string of up to four as or ds.

» E.g., cadr, caddr, cddr, cdadr, ...

Lisp’s nth and nthcdr

(define (nth (n 1)
(cond ((null? 1) nil)
((=n0) (carl))
(#t (nth (- n 1) (cdr 1)))))

(define (nthcdr n)
(cond ((null? I) nil)

((= n0) (cdr 1))
(#t (nthedr (- n 1) (cdr 1)))))

Member

Member returns true, but instead of simply.
returning t, its returns the part of the list
beginning with the object it was looking for.

> (member ‘b ‘(a b c))
(B ©)
member compares objects using equal?

There are versions that use eq? and eqv? And
that take an arbitrary function

Memf

If we want to find an element satisfying an
arbitrary predicate we use the function memf:

> (memf odd? ‘(2 3 4))
(3 4)
Which could be defined like:
(define (memf f 1)
(cond ((null? I) #f)
((f (car 1)) 1)
(#t (memf f (cdr 1)))))

A pair that isn’t a proper list is called a
dotted pair.

However, remember that a dotted pair
isn't really a list at all.

It is a just a two part data structure.

Dotted Lists

The kind of lists that can be built by calling /ist are
more precisely known as proper: lists.
A proper list is either the empty list, or a conswhose
cdris a proper list.
However, conses are notjust for building lists —-
whenever you need a structure with two fields you
can use a cons.
You will be able to use car to refer to the first field
and cdr to refer to the second.
> (set! pair (cons‘a ‘b))
(A . B)
Because this cons is not a proper list, it is displayed in
dot notation.
In dot notation the car and cdr of each cons are
shown separated by a period.

