
CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 1

Chapter 5Chapter 5
Variables:

Names, Bindings,
Type Checking and Scope

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 2

Introduction
This chapter introduces the fundamental

semantic issues of variables.
– It covers the nature of names and special words

in programming languages, attributes of
variables, concepts of binding and binding times.

– It investigates type checking, strong typing and
type compatibility rules.

– At the end it discusses named constraints and
variable initialization techniques.

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 3

Names
Names

Design issues:
Maximum length?
Are connector characters allowed?
Are names case sensitive?
Are special words reserved words or keywords?

Length
FORTRAN I: maximum 6
COBOL: maximum 30
FORTRAN 90 and ANSI C: maximum 31
Ada: no limit, and all are significant
C++: no limit, but implementors often impose one

Connectors
Pascal, Modula-2, and FORTRAN 77 don't allow
Others do

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 4

Case sensitivity
• Foo = foo?
• The first languages only had upper case
• Case sensitivity was probably introduced by Unix and

hence C.
• Disadvantage:

• Poor readability, since names that look alike to a
human are different; worse in Modula-2 because
predefined names are mixed case (e.g. WriteCard)

• Advantages:
• Larger namespace, ability to use case to signify

classes of variables (e.g., make constants be in
uppercase)

• C, C++, Java, and Modula-2 names are case sensitive but
the names in many other languages are not

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 5

Special words

Def: A keyword is a word that is special only
in certain contexts
–Disadvantage: poor readability
–Advantage: flexibility

Def: A reserved word is a special word that
cannot be used as a user-defined name

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 6

Variables
• A variable is an abstraction of a memory cell

• Variables can be characterized as a 6-tuple of
attributes:

Name: identifier
Address: memory location(s)
Value: particular value at a moment
Type: range of possible values
Lifetime: when the variable accessible
Scope: where in the program it can be accessed

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 7

Variables
• Name - not all variables have them (examples?)
• Address - the memory address with which it is

associated
• A variable may have different addresses at

different times during execution
• A variable may have different addresses at

different places in a program
• If two variable names can be used to access the

same memory location, they are called aliases
• Aliases are harmful to readability, but they are

useful under certain circumstances

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 8

Aliases
• How aliases can be created:

• Pointers, reference variables, Pascal variant
records, C and C++ unions, and FORTRAN
EQUIVALENCE (and through parameters
- discussed in Chapter 8)

• Some of the original justifications for aliases
are no longer valid; e.g. memory reuse in
FORTRAN
• replace them with dynamic allocation

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 9

Variables Type and Value

Type - determines the range of values of
variables and the set of operations that are
defined for values of that type; in the case of
floating point, type also determines the
precision

Value - the contents of the location with which
the variable is associated

• Abstract memory cell - the physical cell or
collection of cells associated with a variable

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 10

lvalue and rvalue

Are the two occurrences of “a” in this expression
the same?

a := a + 1;
In a sense,

• The one on the left of the assignment refers to the
location of the variable whose name is a;

• The one on the right of the assignment refers to the
value of the variable whose name is a;

We sometimes speak of a variable’s lvalue and
rvalue
• The lvalue of a variable is its address
• The rvalue of a variable is its value

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 11

Binding
Def: A binding is an association, such as between an

attribute and an entity, or between an operation and
a symbol

Def: Binding time is the time at which a binding
takes place.

Possible binding times:
– Language design time -- e.g., bind operator symbols to operations
– Language implementation time -- e.g., bind floating point type to a

representation
– Compile time -- e.g., bind a variable to a type in C or Java
– Link time
– Load time--e.g., bind a FORTRAN 77 variable to memory cell (or

a C static variable)
– Runtime -- e.g., bind a nonstatic local variable to a memory cell

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 12

Type Bindings
• Def: A binding is static if it occurs before

run time and remains unchanged throughout
program execution.

• Def: A binding is dynamic if it occurs during
execution or can change during execution of
the program.

• Type binding issues
• How is a type specified?
• When does the binding take place?
• If static, type may be specified by either an explicit or an

implicit declaration

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 13

Variable Declarations
Def: An explicit declaration is a program statement

used for declaring the types of variables

Def: An implicit declaration is a default mechanism for
specifying types of variables (the first appearance of the
variable in the program)
– E.g.: in Perl, variables of type scalar, array and hash begin with a $, @ or %,

respectively.
– E.g.: In Fortran, variables beginning with I-N are assumed to be of type

integer.
– E.g.: ML (and other languages) use sophisticated type inference

mechanisms
Advantages: writability, convenience
Disadvantages: reliability

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 14

Dynamic Type Binding
• The type of a variable can chance during the course of the

program and, in general, is re-determined on every
assignment.

• Usually associated with languages first implemented via
an interpreter rather than a compiler.

• Specified through an assignment statement, e.g. APL
LIST <- 2 4 6 8
LIST <- 17.3 23.5

• Advantages:
• Flexibility
• Obviates the need for “polymorphic” types
• Development of generic functions (e.g. sort)

• Disadvantages:
• High cost (dynamic type checking and interpretation)
• Type error detection by the compiler is difficult

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 15

Type Inferencing
• Type Inferencing is used in some programming languages,

including ML, Miranda, and Haskell.
• Types are determined from the context of the reference,

rather than just by assignment statement.
• Legal:

fun circumf(r) = 3.14159 * r * r; // infer r is real
fun time10(x) = 10 * x; // infer r is integer

• Illegal:
fun square(x) = x * x; // can’t deduce anything

• Fixed
fun square(x) : int = x * x; // use explicit declaration

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 16

Storage Bindings and Lifetime
• Storage Bindings

• Allocation - getting a cell from some pool of
available cells

• Deallocation - putting a cell back into the pool
• Def: The lifetime of a variable is the time during

which it is bound to a particular memory cell
• Categories of variables by lifetimes

• Static
• Stack dynamic
• Explicit heap dynamic
• Implicit heap dynamic

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 17

Static Variables

• Static variables are bound to memory cells
before execution begins and remains bound to
the same memory cell throughout execution.

• Examples:
• all FORTRAN 77 variables
• C static variables

Advantage: efficiency (direct addressing),
history-sensitive subprogram support

Disadvantage: lack of flexibility, no recursion!
CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 18

Static Dynamic Variables
• Stack-dynamic variables -- Storage bindings are

created for variables when their declaration
statements are elaborated.

• If scalar, all attributes except address are
statically bound
– e.g. local variables in Pascal and C subprograms

• Advantages:
– allows recursion
– conserves storage

• Disadvantages:
– Overhead of allocation and deallocation
– Subprograms cannot be history sensitive
– Inefficient references (indirect addressing)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 19

Explicit heap-dynamic

Explicit heap-dynamic variables are allocated and
deallocated by explicit directives, specified by the
programmer, which take effect during execution
• Referenced only through pointers or references
• e.g. dynamic objects in C++ (via new and delete),

all objects in Java
Advantage: provides for dynamic storage management
Disadvantage: inefficient and unreliable
Example:

int *intnode;
. . .
intnode = new int;
. . .
delete intnode;

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 20

Implicit heap-dynamic

Implicit heap-dynamic variables -- Allocation
and deallocation caused by assignment
statements and types not determined until
assignment.

e.g. all variables in APL
Advantage:

– flexibility
Disadvantages:

– Inefficient, because all attributes are dynamic
– Loss of error detection

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 21

Type Checking
Generalize the concept of operands and operators to

include subprograms and assignments
• Type checking is the activity of ensuring that the operands of an

operator are of compatible types
• A compatible type is one that is either legal for the operator, or

is allowed under language rules to be implicitly converted, by
compiler-generated code, to a legal type.

• This automatic conversion is called a coercion.
• A type error is the application of an operator to an operand of

an inappropriate type
• Note:

If all type bindings are static, nearly all checking can be static
If type bindings are dynamic, type checking must be dynamic

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 22

Strong Typing
A programming language is strongly typed if
• type errors are always detected
• There is strict enforcement of type rules with no

exceptions.
• All types are known at compile time, i.e. are

statically bound.
• With variables that can store values of more than

one type, incorrect type usage can be detected at
run-time.

• Strong typing catches more errors at compile time
than weak typing, resulting in fewer run-time
exceptions.

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 23

Which languages have strong typing?

• Fortran 77 isn’t because it doesn’t check parameters and
because of variable equivalence statements.

• The languages Ada, Java, and Haskell are strongly typed.
• Pascal is (almost) strongly typed, but variant records screw it

up.
• C and C++ are sometimes described as strongly typed, but are

perhaps better described as weakly typed because parameter
type checking can be avoided and unions are not type
checked

• Coercion rules strongly affect strong typing—they can weaken
it considerably (C++ versus Ada)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 24

Type Compatibility
Type compatibility by name means the two variables have

compatible types if they are in either the same declaration or in
declarations that use the same type name

• Easy to implement but highly restrictive:
• Subranges of integer types aren’t compatible with integer types
• Formal parameters must be the same type as their

corresponding actual parameters (Pascal)

Type compatibility by structure means that two variables have
compatible types if their types have identical structures
• More flexible, but harder to implement

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 25

Type Compatibility
Consider the problem of two structured types.

Suppose they are circularly defined

• Are two record types compatible if they are structurally
the same but use different field names?

• Are two array types compatible if they are the same except
that the subscripts are different? (e.g. [1..10] and [-5..4])

• Are two enumeration types compatible if their
components are spelled differently?

With structural type compatibility, you cannot
differentiate between types of the same structure
(e.g. different units of speed, both float)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 26

Type Compatibility Language examples

Pascal: usually structure, but in some cases name is used
(formal parameters)

C: structure, except for records

Ada: restricted form of name
– Derived types allow types with the same structure to

be different
– Anonymous types are all unique, even in:

A, B : array (1..10) of INTEGER:

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 27

Variable Scope
• The scope of a variable is the range of statements in

a program over which it’s visible
• Typical cases:

• Explicitly declared => local variables
• Explicitly passed to a subprogram => parameters
• The nonlocal variables of a program unit are those

that are visible but not declared.
• Global variables => visible everywhere.

• The scope rules of a language determine how
references to names are associated with variables.

• The two major schemes are static scoping and
dynamic scoping

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 28

Static Scope
• Aka “lexical scope”
• Based on program text and can be determined prior

to execution (e.g., at compile time)
• To connect a name reference to a variable, you (or

the compiler) must find the declaration
• Search process: search declarations, first locally,

then in increasingly larger enclosing scopes, until
one is found for the given name

• Enclosing static scopes (to a specific scope) are
called its static ancestors; the nearest static
ancestor is called a static parent

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 29

Blocks
• A block is a section of code in which local

variables are allocated/deallocated at the
start/end of the block.

• Provides a method of creating static scopes
inside program units

• Introduced by ALGOL 60 and found in
most PLs.

• Variables can be hidden from a unit by
having a "closer" variable with same name

C++ and Ada allow access to these "hidden"
variables

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 30

Examples of Blocks
C and C++:
for (...) {
int index;
...
}

Ada:
declare LCL :
FLOAT;
begin
...
end

Common Lisp:

(let ((a 1)
(b foo)
(c))

(setq a (* a a))
(bar a b c))

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 31

Static scoping example

MAIN MAIN

A B A B

C D E C D E

MAIN
A

C

D

B

E

MAIN

A B

C D E

MAIN calls A and B

A calls C and D

B calls A and E

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 32

Evaluation of Static Scoping
Suppose the spec is changed so that D must now
access some data in B

Solutions:

1. Put D in B (but then C can no longer call it and D cannot
access A's variables)

2. Move the data from B that D needs to MAIN (but then all
procedures can access them)

Same problem for procedure access!

Overall: static scoping often encourages many globals

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 33

Dynamic Scope
• Based on calling sequences of program units, not their

textual layout (temporal versus spatial)
• References to variables are connected to declarations by

searching back through the chain of subprogram calls that
forced execution to this point

• Used in APL, Snobol and LISP
– Note that these languages were all (initially) implemented as interpreters

rather than compilers.
• Consensus is that PLs with dynamic scoping leads to

programs which are difficult to read and maintain.
– Lisp switch to using static scoping as it’s default circa 1980, though

dynamic scoping is still possible as an option.

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 34

Static vs. dynamic scope

Define MAIN
declare x
Define SUB1

declare x
...
call SUB2
...

Define SUB2
...
reference x
...

...
call SUB1
...

MAIN calls SUB1
SUB1 calls SUB2
SUB2 uses x

• Static scoping - reference to x
is to MAIN's x

• Dynamic scoping - reference
to x is to SUB1's x

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 35

Dynamic Scoping

Evaluation of Dynamic Scoping:
• Advantage: convenience
• Disadvantage: poor readability

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 36

Scope vs. Lifetime

• While these two issues seem related,
they can differ

• In Pascal, the scope of a local variable
and the lifetime of a local variable seem
the same

• In C/C++, a local variable in a function
might be declared static but its lifetime
extends over the entire execution of the
program and therefore, even though it is
inaccessible, it is still in memory

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 37

Referencing Environments

• The referencing environment of a statement is the
collection of all names that are visible in the statement

• In a static scoped language, that is the local variables
plus all of the visible variables in all of the enclosing
scopes. See book example (p. 184)

• A subprogram is active if its execution has begun
but has not yet terminated

• In a dynamic-scoped language, the referencing
environment is the local variables plus all visible
variables in all active subprograms. See book
example (p. 185)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 38

Named Constants
• A named constant is a variable that is bound to a

value only when it is bound to storage.
• The value of a named constant can’t be changed

while the program is running.
• The binding of values to named constants can be
either static (called manifest constants) or dynamic
• Languages:

Pascal: literals only
Modula-2 and FORTRAN 90: constant-valued expressions
Ada, C++, and Java: expressions of any kind

• Advantages: increased readability and modifiability
without loss of efficiency

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 39

Example in Pascal

Procedure example;
type a1[1..100] of integer;

a2[1..100] of real;
...
begin
...
for I := 1 to 100 do

begin ... end;
...
for j := 1 to 100 do

begin ... end;
...
avg = sum div 100;
...

Procedure example;
type const MAX 100;

a1[1..MAX] of integer;
a2[1..MAX] of real;

...
begin
...
for I := 1 to MAX do

begin ... end;
...
for j := 1 to MAX do

begin ... end;
...
avg = sum div MAX;
...

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 40

Variable Initialization

• For convenience, variable initialization can
occur prior to execution

• FORTRAN: Integer Sum
Data Sum /0/

• Ada: Sum : Integer :=0;
• ALGOL 68: int first := 10;
• Java: int num = 5;
• LISP (Let (x y (z 10) (sum 0)) ...)

CMSC331. Some material © 1998 by Addison Wesley Longman, Inc. 41

Summary
In this chapter, we see the following concepts being

described
• Variable Naming, Aliases
• Binding and Lifetimes
• Type variables
• Scoping
• Referencing environments
• Named Constants
• Type Compatibility Rules

