Chapter 5

Variables:
Names, Bindings,
Type Checking and Scope

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc,

Introduction

This chapter introduces the fundamental
semantic issues of variables.

—1It covers the nature of names and special words
in programming languages, attributes of
variables, concepts of binding and binding times.

—It investigates type checking, strong typing and
type compatibility rules.

— At the end it discusses named constraints and
variable initialization techniques.

CMSC331,_Some material © 1998 by Addison Wesley Longman, Inc,

Names

Names
Design issues:
Maximum length?
Are connector characters allowed?
Are names case sensitive?
Are special words reserved words or keywords?
Length
FORTRAN I: maximum 6
COBOL: maximum 30
FORTRAN 90 and ANSI C: maximum 31
Ada: no limit, and all are significant
C++: no limit, but implementors often impose one

Connectors
Pascal, Modula-2, and FORTRAN 77 don't allow
Others do

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

Case sensitivity

* Foo = foo?

* The first languages only had upper case

* Case sensitivity was probably introduced by Unix and
hence C.

* Disadvantage:

* Poor readability, since names that look alike to a
human are different; worse in Modula-2 because
predefined names are mixed case (e.g. WriteCard)

» Advantages:

» Larger namespace, ability to use case to signify
classes of variables (e.g., make constants be in
uppercase)

e C, C++, Java, and Modula-2 names are case sensitive but
the names in many other languages are not

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

Special words

Def: A keyword is a word that is special only
in certain contexts
—Disadvantage: poor readability
—Advantage: flexibility

Def: A reserved word is a special word that
cannot be used as a user-defined name

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc,

Variables

* A variable is an abstraction of a memory cell

* Variables can be characterized as a 6-tuple of
attributes:

Name: identifier

Address: memory location(s)

Value: particular value at a moment

Type: range of possible values

Lifetime: when the variable accessible

Scope: where in the program it can be accessed

Variables

» Name - not all variables have them (examples?)

* Address - the memory address with which it is
associated

* A variable may have different addresses at
different times during execution

* A variable may have different addresses at
different places in a program

* [f two variable names can be used to access the
same memory location, they are called aliases

* Aliases are harmful to readability, but they are
useful under certain circumstances

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

Aliases
* How aliases can be created:

* Pointers, reference variables, Pascal variant
records, C and C++ unions, and FORTRAN
EQUIVALENCE (and through parameters
- discussed in Chapter 8)

» Some of the original justifications for aliases
are no longer valid; e.g. memory reuse in
FORTRAN

* replace them with dynamic allocation

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

Variables Type and Value

Type - determines the range of values of
variables and the set of operations that are
defined for values of that type; in the case of
floating point, type also determines the
precision

Value - the contents of the location with which
the variable is associated

* Abstract memory cell - the physical cell or
collection of cells associated with a variable

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc,

Ivalue and rvalue

Are the two occurrences of “a” in this expression
the same?
a:=a+l;
In a sense,
* The one on the Jeft of the assignment refers to the
location of the variable whose name is a;
* The one on the right of the assignment refers to the
value of the variable whose name is a;
We sometimes speak of a variable’s Ivalue and
rvalue
* The Ivalue of a variable is its address
* The rvalue of a variable is its value

Binding

Def: A binding is an association, such as between an
attribute and an entity, or between an operation and
a symbol

Def: Binding time is the time at which a binding
takes place.

Possible binding times:

— Language design time -- e.g., bind operator symbols to operations

— Language implementation time -- e.g., bind floating point type to a
representation

— Compile time -- e.g., bind a variable to a type in C or Java

— Link time

— Load time--e.g., bind a FORTRAN 77 variable to memory cell (or
a C static variable)

— Runtime -- e.g., bind a nonstatic local variable to a memory cell

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

11

CMSC331,_Some material © 1998 by Addison Wesley Longman, Inc,

10

Type Bindings

* Def: A binding is static if it occurs before
run time and remains unchanged throughout
program execution.

* Def: A binding is dynamic if it occurs during
execution or can change during execution of
the program.

* Type binding issues

* How is a type specified?
* When does the binding take place?

« If static, type may be specified by either an explicit or an
implicit declaration

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

12

Variable Declarations

Def: An explicit declaration is a program statement
used for declaring the types of variables

Def: An implicit declaration is a default mechanism for
specifying types of variables (the first appearance of the

variable in the program)

— E.g.: in Perl, variables of type scalar, array and hash begin with a $, @ or %,
respectively.

— E.g.: In Fortran, variables beginning with I-N are assumed to be of type
integer.

— E.g.: ML (and other languages) use sophisticated type inference
mechanisms

Advantages: writability, convenience

Disadvantages: reliability

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc,

13

Dynamic Type Binding

* The type of a variable can chance during the course of the
program and, in general, is re-determined on every
assignment.

* Usually associated with languages first implemented via
an interpreter rather than a compiler.

* Specified through an assignment statement, e.g. APL
LIST <- 2 4 6 8
LIST <- 17.3 23.5
* Advantages:
« Flexibility
« Obviates the need for “polymorphic” types
« Development of generic functions (e.g. sort)
* Disadvantages:
* High cost (dynamic type checking and interpretation)
* Type error detection by the compiler is difficult

CMSC331,_Some material © 1998 by Addison Wesley Longman, Inc,

14

Type Inferencing

» Type Inferencing is used in some programming languages,
including ML, Miranda, and Haskell.

* Types are determined from the context of the reference,
rather than just by assignment statement.

* Legal:
fun circumf(r) = 3.14159 *r * r; //infer r is real
fun time10(x) = 10 * x;
* Illegal:

// infer r is integer

fun square(x) = x * x;
* Fixed
fun square(x) : int =x * x;

// can’t deduce anything

// use explicit declaration

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

15

Storage Bindings and Lifetime

* Storage Bindings

* Allocation - getting a cell from some pool of

available cells

* Deallocation - putting a cell back into the pool

* Def: The lifetime of a variable is the time during
which it is bound to a particular memory cell

* Categories of variables by lifetimes

» Static

* Stack dynamic

* Explicit heap dynamic

* Implicit heap dynamic

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

16

Static Variables

» Static variables are bound to memory cells
before execution begins and remains bound to
the same memory cell throughout execution.

* Examples:
* all FORTRAN 77 variables
« C static variables

Advantage: efficiency (direct addressing),
history-sensitive subprogram support
Disadvantage: lack of flexibility, no recursion!

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc,

17

Static Dynamic Variables

» Stack-dynamic variables -- Storage bindings are
created for variables when their declaration
statements are elaborated.

* If scalar, all attributes except address are
statically bound

— e.g. local variables in Pascal and C subprograms

* Advantages:
— allows recursion
— conserves storage
* Disadvantages:
— Overhead of allocation and deallocation
— Subprograms cannot be history sensitive
— Inefficient references (indirect addressing)

Explicit heap-dynamic

Explicit heap-dynamic variables are allocated and
deallocated by explicit directives, specified by the
programmer, which take effect during execution

» Referenced only through pointers or references
* e.g. dynamic objects in C++ (via new and delete),
all objects in Java

Advantage: provides for dynamic storage management

Disadvantage: inefficient and unreliable

Example:
int *intnode;

intnode = new int;

delete intnode;

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

19

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc, 18
Implicit heap-dynamic
Implicit heap-dynamic variables -- Allocation
and deallocation caused by assignment
statements and types not determined until
assignment.
e.g. all variables in APL
Advantage:
— flexibility
Disadvantages:
— Inefficient, because all attributes are dynamic
— Loss of error detection
20

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

Type Checking

Generalize the concept of operands and operators to

include subprograms and assignments
* Type checking is the activity of ensuring that the operands of an
operator are of compatible types
* A compatible type is one that is either legal for the operator, or
is allowed under language rules to be implicitly converted, by
compiler-generated code, to a legal type.
* This automatic conversion is called a coercion.
* A type error is the application of an operator to an operand of
an inappropriate type
* Note:
If all type bindings are static, nearly all checking can be static
If type bindings are dynamic, type checking must be dynamic

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc, 21

Strong Typing

A programming language is strongly typed if

* type errors are always detected

* There is strict enforcement of type rules with no
exceptions.

* All types are known at compile time, i.e. are
statically bound.

» With variables that can store values of more than
one type, incorrect type usage can be detected at
run-time.

* Strong typing catches more errors at compile time
than weak typing, resulting in fewer run-time
exceptions.

Which languages have strong typing?

* Fortran 77 isn’t because it doesn’t check parameters and
because of variable equivalence statements.

* The languages Ada, Java, and Haskell are strongly typed.

* Pascal is (almost) strongly typed, but variant records screw it
up.

* C and C++ are sometimes described as strongly typed, but are
perhaps better described as weakly typed because parameter
type checking can be avoided and unions are not type
checked

* Coercion rules strongly affect strong typing—they can weaken
it considerably (C++ versus Ada)

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc. 23

CMSC331,_Some material © 1998 by Addison Wesley Longman, Inc, 22

Type Compatibility

Type compatibility by name means the two variables have
compatible types if they are in either the same declaration or in
declarations that use the same type name

* Easy to implement but highly restrictive:
» Subranges of integer types aren’t compatible with integer types
» Formal parameters must be the same type as their
corresponding actual parameters (Pascal)

Type compatibility by structure means that two variables have
compatible types if their types have identical structures
* More flexible, but harder to implement

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc. 24

Type Compatibility
Consider the problem of two structured types.

Suppose they are circularly defined

* Are two record types compatible if they are structurally
the same but use different field names?

* Are two array types compatible if they are the same except
that the subscripts are different? (e.g. [1..10] and [-5..4])

* Are two enumeration types compatible if their
components are spelled differently?

With structural type compatibility, you cannot
differentiate between types of the same structure
(e.g. different units of speed, both float)

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc,

25

Type Compatibility Language examples

Pascal: usually structure, but in some cases name is used
(formal parameters)

C: structure, except for records

Ada: restricted form of name
— Derived types allow types with the same structure to
be different
— Anonymous types are all unique, even in:
A, B :array (1..10) of INTEGER:

Variable Scope

* The scope of a variable is the range of statements in
a program over which it’s visible
* Typical cases:
* Explicitly declared => local variables
* Explicitly passed to a subprogram => parameters
* The nonlocal variables of a program unit are those
that are visible but not declared.
* Global variables => visible everywhere.
* The scope rules of a language determine how
references to names are associated with variables.
* The two major schemes are static scoping and
dynamic scoping

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

27

CMSC331,_Some material © 1998 by Addison Wesley Longman, Inc,

26

Static Scope

* Aka “lexical scope”

* Based on program text and can be determined prior
to execution (e.g., at compile time)

* To connect a name reference to a variable, you (or
the compiler) must find the declaration

* Search process: search declarations, first locally,
then in increasingly larger enclosing scopes, until
one is found for the given name

* Enclosing static scopes (to a specific scope) are
called its static ancestors; the nearest static
ancestor is called a static parent

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

28

Blocks

* A block is a section of code in which local
variables are allocated/deallocated at the
start/end of the block.

* Provides a method of creating static scopes
inside program units

* Introduced by ALGOL 60 and found in
most PLs.

* Variables can be hidden from a unit by
having a "closer" variable with same name

C++ and Ada allow access to these "hidden"
variables

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc, 29

Examples of Blocks

Static scoping example

MAIN
MAIN _ /\
MAIN calls A and B A c A B
A calls C and D [C /\ |
B calls A and E b C D E
B
Lc
MAIN MAIN

A B
@ E %
N 11
O O O) &)
31

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

C and C++ Common Lisp:
for (...) {
int index; (let ((a 1)
i oo (b foo)
(c))
Ada: (setg a (* a a))
declare LCL : (bar a b ¢))
FLOAT;
begin
end
lCMSC331._Some material © 1998 by Addison Weslev Longman, Inc, 30

Evaluation of Static Scoping

Suppose the spec is changed so that D must now
access some data in B

Solutions:

1. Put D in B (but then C can no longer call it and D cannot
access A's variables)

2. Move the data from B that D needs to MAIN (but then all
procedures can access them)

Same problem for procedure access!

Overall: static scoping often encourages many globals

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc. 32

Dynamic Scope

* Based on calling sequences of program units, not their
textual layout (temporal versus spatial)

* References to variables are connected to declarations by
searching back through the chain of subprogram calls that
forced execution to this point

» Used in APL, Snobol and LISP

— Note that these languages were all (initially) implemented as interpreters
rather than compilers.
 Consensus is that PLs with dynamic scoping leads to
programs which are difficult to read and maintain.
— Lisp switch to using static scoping as it’s default circa 1980, though
dynamic scoping is still possible as an option.

Static vs. dynamic scope

Define MAIN MAIN calls SUBI1

declare x SUBI calls SUB2

Define SUB1 SUB2 uses x
declare x
call SUB2

Define SUB2 » Static scoping - reference to x
reference x iS to MAIN's x

* Dynamic scoping - reference

call SUB1 to x is to SUB1's x

| CMSCa31, Some material © 1998 by Addison Wesley Longman, Inc, 33
Dynamic Scoping
Evaluation of Dynamic Scoping:
* Advantage: convenience
* Disadvantage: poor readability
35

[CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

CMSC331,_Some material © 1998 by Addison Wesley Longman, Inc,

34

Scope vs. Lifetime

* While these two issues seem related,
they can differ

* In Pascal, the scope of a local variable
and the lifetime of a local variable seem
the same

* In C/C++, a local variable in a function
might be declared static but its lifetime
extends over the entire execution of the
program and therefore, even though it is
inaccessible, it is still in memory

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

36

Referencing Environments

* The referencing environment of a statement is the
collection of all names that are visible in the statement

* In a static scoped language, that is the local variables
plus all of the visible variables in all of the enclosing
scopes. See book example (p. 184)

A subprogram is active if its execution has begun
but has not yet terminated

* In a dynamic-scoped language, the referencing
environment is the local variables plus all visible
variables in all active subprograms. See book
example (p. 185)

Named Constants

* A named constant is a variable that is bound to a
value only when it is bound to storage.
* The value of a named constant can’t be changed
while the program is running.
* The binding of values to named constants can be
either static (called manifest constants) or dynamic
» Languages:
Pascal: literals only

Modula-2 and FORTRAN 90: constant-valued expressions
Ada, C++, and Java: expressions of any kind

* Advantages: increased readability and modifiability
without loss of efficiency

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc, 37
.
Example in Pascal
Procedure example; Procedure example;
type al[l..100] of integer; type const MAX 100;
a2[1..100] of real; al[l..MAX] of integer;
a2[l..MAX] of real;
begin 000
cso begin
for I :=1 to 100 do
begin ... end; for I := 1 to MAX do
begin ... end;
for j := 1 to 100 do
begin ... end; for j := 1 to MAX do
begin ... end;
avg = sum div 100;
avg = sum div MAX;
CMSC31 Some materiat © 1998 by Addison Westey Longman, ne. 39

CMSC331,_Some material © 1998 by Addison Wesley Longman, Inc,

38

Variable Initialization

* For convenience, variable initialization can
occur prior to execution

* FORTRAN: Integer Sum
Data Sum /0/

* Ada: Sum : Integer :=0;

* ALGOL 68: int first := 10;

e Java: int num = 5;

* LISP (Let(xy(z 10) (sum0))...)

CMSC331._Some material © 1998 by Addison Wesley Longman, Inc.

40

Summary

In this chapter, we see the following concepts being
described

* Variable Naming, Aliases
* Binding and Lifetimes

* Type variables

* Scoping

* Referencing environments
* Named Constants

* Type Compatibility Rules

|CMSC331._Some material © 1998 by Addison Wesley Longman, Inc, 41

